Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885803

ABSTRACT

Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.


Subject(s)
Cellulases/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Fungi/physiology , Plant Diseases/microbiology , Brassica napus/microbiology , Brassica napus/physiology , Cell Wall/metabolism , Cell Wall/microbiology , Fungi/enzymology , Host-Pathogen Interactions , Hydrolysis , Malus/microbiology , Malus/physiology , Polysaccharides/metabolism , Triticum/microbiology , Triticum/physiology , Wood/microbiology , Wood/physiology
2.
Biotechnol Adv ; 63: 108104, 2023.
Article in English | MEDLINE | ID: mdl-36716800

ABSTRACT

Natural anthraquinones are represented by a large group of compounds. Some of them are widespread across the kingdoms, especially in bacteria, fungi and plants, while the others are restricted to certain groups of organisms. Despite the significant pharmacological potential of several anthraquinones (hypericin, skyrin and emodin), their biosynthetic pathways and candidate genes coding for key enzymes have not been experimentally validated. Understanding the genetic and epigenetic regulation of the anthraquinone biosynthetic gene clusters in fungal endophytes would help not only understand their pathways in plants, which ensure their commercial availability, but also favor them as promising systems for prospective biotechnological production.


Subject(s)
Polyketides , Polyketides/metabolism , Epigenesis, Genetic , Prospective Studies , Anthraquinones/metabolism , Plants/metabolism , Biosynthetic Pathways/genetics , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL