Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
Add more filters

Publication year range
1.
Semin Cell Dev Biol ; 124: 3-14, 2022 04.
Article in English | MEDLINE | ID: mdl-33926791

ABSTRACT

The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.


Subject(s)
MicroRNAs , Neoplasms , Endothelial Cells/metabolism , Humans , Macrophages/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/pathology , Tumor Microenvironment/genetics
2.
J Biochem Mol Toxicol ; 38(7): e23764, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963172

ABSTRACT

Obesity is an established risk factor for numerous malignancies, although it remains uncertain whether the disease itself or weight-loss drugs are responsible for a greater predisposition to cancer. The objective of the current study was to determine the impact of dulaglutide on genetic and epigenetic DNA damage caused by obesity, which is a crucial factor in the development of cancer. Mice were administered a low-fat or high-fat diet for 12 weeks, followed by a 5-week treatment with dulaglutide. Following that, modifications of the DNA bases were examined using the comet assay. To clarify the underlying molecular mechanisms, oxidized and methylated DNA bases, changes in the redox status, levels of inflammatory cytokines, and the expression levels of some DNA repair genes were evaluated. Animals fed a high-fat diet exhibited increased body weights, elevated DNA damage, oxidation of DNA bases, and DNA hypermethylation. In addition, obese mice showed altered inflammatory responses, redox imbalances, and repair gene expressions. The findings demonstrated that dulaglutide does not exhibit genotoxicity in the investigated conditions. Following dulaglutide administration, animals fed a high-fat diet demonstrated low DNA damage, less oxidation and methylation of DNA bases, restored redox balance, and improved inflammatory responses. In addition, dulaglutide treatment restored the upregulated DNMT1, Ogg1, and p53 gene expression. Overall, dulaglutide effectively maintains DNA integrity in obese animals. It reduces oxidative DNA damage and hypermethylation by restoring redox balance, modulating inflammatory responses, and recovering altered gene expressions. These findings demonstrate dulaglutide's expediency in treating obesity and its associated complications.


Subject(s)
DNA Damage , DNA Methylation , DNA Repair , Diet, High-Fat , Glucagon-Like Peptides , Immunoglobulin Fc Fragments , Oxidation-Reduction , Recombinant Fusion Proteins , Animals , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , DNA Methylation/drug effects , Immunoglobulin Fc Fragments/pharmacology , DNA Damage/drug effects , Mice , DNA Repair/drug effects , Diet, High-Fat/adverse effects , Recombinant Fusion Proteins/pharmacology , Male , Oxidation-Reduction/drug effects , Inflammation/metabolism , Inflammation/genetics , Oxidative Stress/drug effects , Obesity/metabolism , Obesity/drug therapy , Obesity/genetics , Gene Expression Regulation/drug effects , Mice, Inbred C57BL
3.
J Biochem Mol Toxicol ; 37(12): e23496, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37555509

ABSTRACT

Compared to the general population, patients with arthritis have a higher risk of fertility abnormalities, which have deleterious effects on both reproductive function and pregnancy outcomes, especially in patients wishing to conceive. These may be due to the disease itself or those of drug therapies. Despite the increasing use of rituximab in arthritis, limited data are available on its potential to induce aneuploidy in germ cells. Therefore, the aim of the current investigation was to determine if repeated treatment with rituximab affects the incidence of aneuploidy and redox imbalance in arthritic mouse sperm. Mice were treated with 250 mg/kg rituximab once weakly for 3 weeks, and then sperm were sampled 22 days after the last dose of rituximab. Fluorescence in situ hybridization assay with chromosome-specific DNA probes was used to evaluate the disomic/diploid sperm. Our results showed that rituximab had no aneuploidogenic effect on the meiotic stage of spermatogenesis. Conversely, arthritis induced a significantly high frequency of disomy, and treatment of arthritic mice with rituximab reduced the increased levels of disomic sperm. The occurrence of total diploidy was not significantly different in all groups. Reduced glutathione and8-hydroxydeoxyguanosine, markers of oxidative stress were significantly altered in arthritic animals, while rituximab treatment restored these changes. Additionally, arthritis severity was reduced after rituximab treatment. We conclude that rituximab may efficiently alleviate the arthritis-induced effects on male meiosis and avert the higher risk of abnormal reproductive outcomes. Therefore, treating arthritic patients with rituximab may efficiently inhibit the transmission of genetic anomalies induced by arthritis to future generations.


Subject(s)
Arthritis, Rheumatoid , Semen , Humans , Male , Mice , Animals , Rituximab/pharmacology , Rituximab/therapeutic use , In Situ Hybridization, Fluorescence/methods , Mice, Inbred DBA , Spermatozoa , Aneuploidy , Arthritis, Rheumatoid/drug therapy
4.
Int J Mol Sci ; 24(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37629172

ABSTRACT

We sought to assess the impact of 4-Methylhistamine (4-MeH), a specific agonist targeting the Histamine H4 Receptor (H4R), on the progression of experimental autoimmune encephalomyelitis (EAE) and gain insight into the underlying mechanism. EAE is a chronic autoimmune, inflammatory, and neurodegenerative disease of the central nervous system (CNS) characterized by demyelination, axonal damage, and neurodegeneration. Over the past decade, pharmacological research into the H4R has gained significance in immune and inflammatory disorders. For this study, Swiss Jim Lambert EAE mice were treated with 4-MeH (30 mg/kg/day) via intraperitoneal administration from days 14 to 42, and the control group was treated with a vehicle. Subsequently, we evaluated the clinical scores. In addition, flow cytometry was employed to estimate the impact of 4-Methylhistamine (4-MeH) on NF-κB p65, GM-CSF, MCP-1, IL-6, and TNF-α within CD19+ and CXCR5+ spleen B cells. Additionally, we investigated the effect of 4-MeH on the mRNA expression levels of Nf-κB p65, Gmcsf, Mcp1, Il6, and Tnfα in the brain of mice using RT-PCR. Notably, the clinical scores of EAE mice treated with 4-MeH showed a significant increase compared with those treated with the vehicle. The percentage of cells expressing CD19+NF-κB p65+, CXCR5+NF-κB p65+, CD19+GM-CSF+, CXCR5+GM-CSF+, CD19+MCP-1+, CXCR5+MCP-1+, CD19+IL-6+, CXCR5+IL-6+, CD19+TNF-α+, and CXCR5+TNF-α+ exhibited was more pronounced in 4-MeH-treated EAE mice when compared to vehicle-treated EAE mice. Moreover, the administration of 4-MeH led to increased expression of NfκB p65, Gmcsf, Mcp1, Il6, and Tnfα mRNA in the brains of EAE mice. This means that the H4R agonist promotes pro-inflammatory mediators aggravating EAE symptoms. Our results indicate the harmful role of H4R agonists in the pathogenesis of MS in an EAE mouse model.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Neurodegenerative Diseases , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Interleukin-6 , Receptors, Histamine H4 , Tumor Necrosis Factor-alpha , NF-kappa B , Adaptor Proteins, Signal Transducing , Inflammation/drug therapy , Antigens, CD19 , Disease Progression
5.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108638

ABSTRACT

Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.


Subject(s)
Autism Spectrum Disorder , Humans , Child , Child, Preschool , Interleukin-17/metabolism , Up-Regulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Receptors, Chemokine/metabolism , Transcription Factors/metabolism , CD40 Antigens/genetics , CD40 Antigens/metabolism , RNA, Messenger/metabolism
6.
Int J Mol Sci ; 24(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38003408

ABSTRACT

Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.


Subject(s)
Autism Spectrum Disorder , Interleukin-10 , Humans , Mice , Animals , Interleukin-10/pharmacology , Lead/toxicity , Autism Spectrum Disorder/chemically induced , Interleukin-9/pharmacology , Signal Transduction , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , RNA, Messenger , Mice, Inbred C57BL , Disease Models, Animal
7.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894952

ABSTRACT

Multiple sclerosis (MS) is a degenerative condition characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. The histamine H4 receptor (H4R) is mainly expressed in cellular populations and plays a vital role in inflammation and immunological responses. The role of H4R in neurons of the CNS has recently been revealed. However, the precise role of H4R in neuronal function remains inadequately understood. The objective of this work was to investigate the impact of JNJ 10191584 (JNJ), a highly effective and specific H4R antagonist, on the development of experimental autoimmune encephalomyelitis (EAE) and to gain insight into the underlying mechanism involved. In this study, we examined the potential impact of JNJ therapy on the course of EAE in SJL/J mice. EAE mice were administered an oral dose of JNJ at a concentration of 6 mg/kg once a day, starting from day 10 and continuing until day 42. Afterward, the mice's clinical scores were assessed. In this study, we conducted additional research to examine the impact of JNJ on several types of immune cells, specifically Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγt), and regulatory T (Tregs; Foxp3 and TGF-ß1) cells in the spleen. In this study, we further investigated the impact of JNJ on the mRNA expression levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγt, Foxp3, and TGF-ß1 in the brain. Daily treatment of JNJ effectively reduced the development of EAE in mice. The percentages of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, and CD4+RORγt+ cells were shown to decrease, whereas the percentages of CD4+TGF-ß1+ and CD4+Foxp3+ cells were observed to increase in EAE mice treated with JNJ. Therefore, the HR4 antagonist positively affected the course of EAE by modulating the signaling of transcription factors. The identified results include possible ramifications in the context of MS treatment.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Receptors, Histamine H4 , Transforming Growth Factor beta1 , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Interleukin-17/metabolism , Interleukin-9 , Multiple Sclerosis/drug therapy , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Forkhead Transcription Factors/genetics , Mice, Inbred C57BL
8.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047547

ABSTRACT

Autism spectrum disorders (ASD) are neurobehavioral disabilities characterized by impaired social interactions, poor communication skills, and restrictive/repetitive behaviors. Cadmium is a common heavy metal implicated in ASD. In this study, we investigated the effects of Cd exposure on BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model. We looked for changes in repetitive behaviors and sociability through experiments. We also explored the molecular mechanisms underlying the effects of Cd exposure, focusing on proinflammatory cytokines and pathways. Flow cytometry measured IL-17A-, IL-17F-, IL-21-, TNF-α-, STAT3-, and RORγt-expressing CD4+ T cells from the spleens of experimental mice. We then used RT-PCR to analyze IL-17A, IL-17F, IL-21, TNF-α, STAT3, and RORγ mRNA expression in the brain. The results of behavioral experiments showed that Cd exposure significantly increased self-grooming and marble-burying in BTBR mice while decreasing social interactions. Cd exposure also significantly increased the number of CD4+IL-17A+, CD4+IL-17F+, CD4+IL-21+, CD4+TNF-α+, CD4+STAT3+, and CD4+RORγt+ cells, while upregulating the mRNA expression of the six molecules in the brain. Overall, our results suggest that oral exposure to Cd aggravates behavioral and immune abnormalities in an ASD animal model. These findings have important implications for ASD etiology and provide further evidence of heavy metals contributing to neurodevelopmental disorders through proinflammatory effects.


Subject(s)
Autism Spectrum Disorder , Interleukin-17 , Mice , Animals , Interleukin-17/metabolism , Cadmium/toxicity , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Tumor Necrosis Factor-alpha/genetics , Mice, Inbred C57BL , Mice, Inbred Strains , Autism Spectrum Disorder/metabolism , RNA, Messenger/metabolism , Disease Models, Animal
9.
Saudi Pharm J ; 31(3): 370-381, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37026046

ABSTRACT

Purpose: The clinical study of fulminant hepatic failure is challenging due to its high mortality and relative rarity, necessitating reliance on pre-clinical models to gain insight into its pathophysiology and develop potential therapies. Methods and Results: In our study, the combination of the commonly used solvent dimethyl sulfoxide to the current-day model of lipopolysaccharide/d-galactosamine-caused fulminant hepatic failure was found to cause significantly greater hepatic damage, as indicated by alanine aminotransferase level. The effect was dose-dependent, with the maximum increase in alanine aminotransferase observed following 200 µl/kg dimethyl sulfoxide co-administration. Co-administration of 200 µl/kg dimethyl sulfoxide also remarkably increased histopathological changes induced by lipopolysaccharide/d-galactosamine. Importantly, alanine aminotransferase levels and survival rate in the 200 µl/kg dimethyl sulfoxide co-administration groups were both greater than those in the classical lipopolysaccharide/d-galactosamine model. We found that dimethyl sulfoxide co-administration aggravated lipopolysaccharide/d-galactosamine-caused liver damage by stimulating inflammatory signaling, as indicated by tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) levels. Further, nuclear factor kappa B (NF-kB) and transcription factor activator 1 (STAT1) were upregulated, as was neutrophil recruitment, indicated by myeloperoxidase activity. Hepatocyte apoptosis was also increased, and greater nitro-oxidative stress was noted, as determined based on nitric oxide, malondialdehyde, and glutathione levels. Conclusion: Co-treatment with low doses of dimethyl sulfoxide enhanced the lipopolysaccharide/d-galactosamine-caused hepatic failure in animals, with higher toxicity and greater survival rates. The current findings also highlight the potential danger of using dimethyl sulfoxide as a solvent in experiments involving the hepatic immune system, suggesting that the new lipopolysaccharide/d-galactosamine/dimethyl sulfoxide model described herein could be used for pharmacological screening with the goal to better understand hepatic failure and evaluate treatment approaches.

10.
Cell Immunol ; 379: 104580, 2022 09.
Article in English | MEDLINE | ID: mdl-35872534

ABSTRACT

Multiple sclerosis (MS) is an immunopathological disease that causes demyelination and recurrent episodes of T cell-mediated immune attack in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is a well-established mouse model of MS. The roles of T cells in MS/EAE have been well investigated, but little is known about the role of CCR5+ cells. In the present study, we investigated whether treatment with DAPTA, a selective CCR5 antagonist, could modulate the progression of EAE in the SJL/J mice. EAE mice were treated with DAPTA (0.01 mg/kg) intraperitoneally daily from day 14 to day 42, and the clinical scores were evaluated. We further investigated the effects of DAPTA on IFN-γ-, TGF-ß-, IL-10-, IL-17A-, IL-22-, T-bet, STAT4-, RORγT-, AhR-, Smad3-, and Foxp3-expressing CCR5+ spleen cells using flow cytometry analysis. We further explored the effects of DAPTA on mRNA/protein expression of IFN-γ, IL-10, IL-17A, IL-22, TGF-ß, T-bet, STAT4, RORγT, AhR, Foxp3, and NF-H in the brain tissue. The severity of clinical scores decreased in DAPTA-treated EAE mice as compared to that in the EAE control mice. Moreover, the percentage of CCR5+IFN-γ+, CCR5+T-bet+, CCR5+STAT4+, CCR5+IL-17A+, CCR5+RORγt+, CCR5+IL-22+, and CCR5+AhR+ cells decreased while CCR5+TGF-ß+, CCR5+IL-10+, CCR5+Smad3+, and CCR5+Foxp3+ increased in DAPTA-treated EAE mice. Furthermore, DAPTA treatment significantly mitigated the EAE-induced expression of T-bet, STAT4, IL-17A, RORγT, IL-22, and AhR but upregulated Foxp3, IL-10, and NF-H expression in the brain tissue. Taken together, our data demonstrated that DAPTA could ameliorate EAE progression through the downregulation of the inflammation-related cytokines and transcription factors signaling, which may be useful for the clinical therapy of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Encephalomyelitis , Multiple Sclerosis , Animals , CCR5 Receptor Antagonists/therapeutic use , Disease Models, Animal , Encephalomyelitis/drug therapy , Forkhead Transcription Factors , Inflammation/drug therapy , Interferon-gamma/metabolism , Interleukin-10 , Interleukin-17 , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Multiple Sclerosis/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , STAT4 Transcription Factor , Transforming Growth Factor beta
11.
Biotechnol Bioeng ; 119(1): 9-33, 2022 01.
Article in English | MEDLINE | ID: mdl-34672360

ABSTRACT

The arrangement and type of support has a significant impact on the efficiency of immobilized enzymes. 1-dimensional fibrous materials can be one of the most desirable supports for enzyme immobilization. This is due to their high surface area to volume ratio, internal porosity, ease of handling, and high mechanical stability, all of which allow a higher enzyme loading, release and finally lead to better catalytic efficiency. Fortunately, the enzymes can reside inside individual nanofibers to remain encapsulated and retain their three-dimensional structure. These properties can protect the enzyme's tolerance against harsh conditions such as pH variations and high temperature, and this can probably enhance the enzyme's stability. This review article will discuss the immobilization of enzymes on synthetic polymers, which are fabricated into nanofibers by electrospinning. This technique is rapidly gaining popularity as one of the most practical ways to fibricate polymer, metal oxide, and composite micro or nanofibers. As a result, there is interest in using nanofibers to immobilize enzymes. Furthermore, present research on electrospun nanofibers for enzyme immobilization is primarily limited to the lab scale and industrial scale is still challanging. The primary future research objectives of this paper is to investigate the use of electrospun nanofibers for enzyme immobilization, which includes increasing yield to transfer biological products into commercial applications.


Subject(s)
Biocatalysis , Electrochemical Techniques/methods , Enzymes, Immobilized , Nanofibers/chemistry , Polymers , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Polymers/chemistry , Polymers/metabolism
12.
Mol Pharm ; 19(3): 831-842, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35191706

ABSTRACT

To address the need for localized chemotherapy against unresectable solid tumors, an injectable in situ depot-forming lipidic lyotropic liquid crystal system (L3CS) is explored that can provide spatiotemporal control over drug delivery. Although liquid crystals have been studied extensively before but their application as an injectable intratumoral depot system for locoregional chemotherapy has not been explored yet. The developed L3CS in the present study is a low-viscosity injectable fluid having a lamellar phase, which transforms into a hexagonal mesophase depot system on subcutaneous or intratumoral injection. The transformed depot system can be preprogrammed to provide tailored drug release intratumorally, over a period of one week to one month. To establish the efficacy of the developed L3CS, doxorubicin is used as a model drug. The drug release mechanism is studied in detail both in vitro and in vivo, and the efficacy of the developed system is investigated in the murine 4T1 tumor model. The direct intratumoral injection of the L3CS provided localized delivery of doxorubicin inside the tumor and restricted its access within the tumor only for a sustained period of time. This led to an over 10-fold reduction in tumor burden, reduced cardiotoxicity, and a significant increase in the median survival rate, compared to the control group. The developed L3CS thus provides an efficient strategy for localized chemotherapy against unresectable solid tumors with a great degree of spatial and temporal control over drug delivery.


Subject(s)
Liquid Crystals , Animals , Cardiotoxicity , Doxorubicin , Drug Liberation , Lipids , Mice
13.
Bioorg Chem ; 119: 105512, 2022 02.
Article in English | MEDLINE | ID: mdl-34861627

ABSTRACT

A new series of novel amide conjugates of pyrimidin-4-one and aromatic/heteroaromatic /secondary cyclic amines has been synthesized and their in vitro antiproliferative activities against a panel of 60 human cancer cell lines of nine different cancer types were tested at NCI. Among the synthesized compounds, compound (4i) showed significant anti-proliferative activity. Compound (4i) displayed most potent activity against the breast tumor cell line T-47D and CNS tumor cell line SNB-75 exhibiting a growth of 1.93 % and 14.63 %, respectively. ADMET studies of the synthesized compounds were also performed and they were found to exhibit good drug like properties. Compound (4i) was found to exhibit potential inhibitory effect over GSK-3ß with IC50 value of 71 nM. The molecular docking studies revealed that (4i) showed good binding affinity to GSK-3ß and revealed multiple H-bonding and p-cation interactions with important amino acid residues on the receptor site. Compound (4i) may thus serve as a potential candidate for further development of novel anticancer therapeutics.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Amides/chemical synthesis , Amides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
14.
Mol Cancer ; 20(1): 2, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33390169

ABSTRACT

Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.


Subject(s)
Chemokines/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Molecular Targeted Therapy , Animals , Chemokines/metabolism , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasm Metastasis , Tumor Microenvironment/genetics
15.
Clin Exp Pharmacol Physiol ; 48(4): 478-489, 2021 04.
Article in English | MEDLINE | ID: mdl-33368625

ABSTRACT

Cardiovascular disease is a leading cause of death in diabetic patients. Hyperglycaemia and iatrogenic hypoglycaemia exacerbate several pathogenic mechanisms underlying hypertension and heart diseases. Carnitine is a potent endogenous antioxidant and cellular fatty acid transporter for antioxidative stress and energy production in the cardiovascular system. The current study aimed to find the role of carnitine in the regulation of hypoglycaemia-induced hypertension and cardiac hypertrophy. Male rats received insulin glargine (InG) to induce hypoglycaemia followed by D-carnitine or acetyl-L-carnitine for carnitine depletion or carnitine supplementation, respectively. The obtained results showed that carnitine deficiency provoked hypoglycaemia-induced hypertension. Mean arterial pressure was elevated from 78.16 ± 11.4 to 100 ± 5.11 mm Hg in InG treated group, and from 78.2 ± 8.5 to 123.4 ± 28.2 mm Hg in InG + D-carnitine treated group. Acetyl-L-carnitine resisted the elevation in blood pressure in all hypoglycaemic animals and kept it within the normal values (68.33 ± 6.7 mm Hg). Acetyl-L-carnitine increased myocardial carnitine content leading to the attenuation of hypoglycaemia-induced oxidative stress, which was evaluated through measurement of the oxidative stress biomarkers such as inducible nitric oxide synthase, NAD(P)H quinone dehydrogenase-1, heme oxygenase-I, and glutathione S-transferase. Moreover, acetyl-L-carnitine prevented induction of gene expression of cardiac hypertrophy markers during hypoglycaemic conditions, which was assessed via the evaluation of mRNA expression of α-myosin heavy chain and ß-myosin heavy chain. These findings demonstrate that carnitine might play an essential role in prevention of hypoglycaemia-induced hypertension and cardiac hypertrophy through providing energy and antioxidants to the cardiovascular system.


Subject(s)
Blood Pressure , Cardiomyopathies , Carnitine/deficiency , Hyperammonemia , Muscular Diseases , Animals , Hypertension , Nitric Oxide Synthase Type II , Oxidative Stress/drug effects , Rats
16.
Prep Biochem Biotechnol ; 51(10): 1026-1035, 2021.
Article in English | MEDLINE | ID: mdl-33687315

ABSTRACT

Bimetallic or alloy nanoparticles (NPs) have improved properties compared to their monometallic forms. Microalgae being rich in biocompatible reductants and being ecofriendly are potential sources to synthesize fuctionalized NPs. In this study, biosynthesis of silver, gold, and bimetallic NPs was carried out via bioreduction using aqueous extract of algal isolate Chlorella acidophile, inhabitant of non-arable land. C. acidophile is known to contain highly bioactive functional moieties, which can serve as nanobiofactories for metallic NPs. Various characterization techniques viz, UV-visible spectrophotometer, X-ray diffraction analysis, X-ray photo-electron spectroscopy, and Raman spectroscopy were employed to determine their composition, structure, and crystal phase. The monometallic and bimetallic particles were found to be crystalline state and generally in a spherical shape. Their size ranged from 5 to 45 nm and the corresponding FTIR spectra indicated that the specific organic functional groups from algal extract were involved in the bio-reduction. Furthermore, the core-shell in the case of Au-Ag NPs was formed due to the simultaneous reduction of gold and silver ions. An enhanced and more pronounced Raman spectra of Au-Ag NP compared to individual Au NP indicated the improved properties of bimetallic NPs, the latter having been of immense potential to be used as sensors in industries.


Subject(s)
Alloys/chemistry , Chlorella/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Green Chemistry Technology , Nanotechnology , Plant Extracts/chemistry
17.
Molecules ; 26(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805933

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease mainly affecting the synovial joints. A highly potent antagonist of C-C chemokine receptor 5 (CCR5), maraviroc (MVC), plays an essential role in treating several infectious diseases but has not yet been evaluated for its potential effects on RA development. This study focused on evaluating the therapeutic potential of MVC on collagen-induced arthritis (CIA) in DBA/1J mice. Following CIA induction, animals were treated intraperitoneally with MVC (50 mg/kg) daily from day 21 until day 35 and evaluated for clinical score and histopathological changes in arthritic inflammation. We further investigated the effect of MVC on Th9 (IL-9, IRF-4, and GATA3) and Th17 (IL-21R, IL-17A, and RORγT) cells, TNF-α, and RANTES in CD8+ T cells in the spleen using flow cytometry. We also assessed the effect of MVC on mRNA and protein levels of IL-9, IL-17A, RORγT, and GATA3 in knee tissues using RT-PCR and western blot analysis. MVC treatment in CIA mice attenuated the clinical and histological severity of inflammatory arthritis, and it substantially decreased IL-9, IRF4, IL-21R, IL-17A, RORγT, TNF-α, and RANTES production but increased GATA3 production in CD8+ T cells. We further observed that MVC treatment decreased IL-9, IL-17A, and RORγt mRNA and protein levels and increased those of GATA3. This study elucidates the capacity of MVC to ameliorate the clinical and histological signs of CIA by reducing pro-inflammatory responses, suggesting that MVC may have novel therapeutic uses in the treatment of RA.


Subject(s)
Arthritis, Experimental/drug therapy , Maraviroc/pharmacology , Receptors, CCR5/immunology , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cytokines/immunology , GATA3 Transcription Factor/immunology , Male , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Th17 Cells/immunology , Th17 Cells/pathology , Toll-Like Receptor 9/immunology
18.
Environ Monit Assess ; 193(7): 433, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34152485

ABSTRACT

The plant health is governed by many factors: soil playing a central role which exhibits huge variability in its characteristics. Micronutrients even though needed in small quantities by plants play an indispensable role in affecting the crop growth and development. The assessment of spatial variability of different soil parameters is incumbent for tackling the loss of crop productivity on account of non-receipt of desirable inputs. The present investigation centered on the spatial distribution of soil parameters and micronutrients was conducted to delineate management zones (MZs) in cold arid region (Kargil) of India for proficient micronutrient management. Overall 454 georeferenced representative soil samples at the depths of 0-15 cm were garnered. The soil samples were processed and analyzed for different soil parameters encompassing pH, EC (electrical conductivity), SOC (soil organic carbon), and available micro-nutrient (iron, manganese, zinc, copper and nickel) concentrations. The distinct variation in the soil properties including micronutrients was identified with coefficient of variation ranging as low as 5.62% to moderate (21.16 to 42.49%) and as high as 159.63%. Semivariogram analysis and ordinary kriging of soil variables under study revealed diverse spatial distribution exhibiting medium to high spatial dependence in the region. PCA (principal component analysis) and K-means clustering were expended for the delineation of MZs. Four principal components (PCs) having eigen values > 1 and accounting for 70% of the total variation were subjected to further analysis. The five potential MZs were demarcated on the basis of K-means cluster performance index, and heterogeneity in parameters was discerned. The results of study corroborate that the spatial variability analysis of different soil parameters for delineation/identification of MZs might be effectually employed for site-specific micronutrient management.


Subject(s)
Carbon , Soil , Carbon/analysis , Environmental Monitoring , India , Micronutrients , Spatial Analysis
19.
J Vet Med Educ ; 48(3): 289-294, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32163018

ABSTRACT

A survey approved by the Association of American Veterinary Medical Colleges was sent to the academic deans of all 49 accredited veterinary colleges to obtain information on educational programs offered in integrative veterinary medicine (IVM). Results were compared to a previous survey with a similar design performed 7 years earlier. Survey responses were received from 43 of 49 institutions (87.8%). Thirteen respondents (30.2%) reported offering a formal course in IVM, 33 (76.7%) offered some level of instruction in the curriculum, and 32 (74.4%) provided clinical services in IVM. The most common IVM topics covered in the curriculum were rehabilitation and acupuncture. Dedicated courses in IVM had decreased since the previous survey, although faculty trained in at least one aspect of IVM increased. Clinical services incorporating IVM were present in the majority of veterinary teaching hospitals. Further investigation is required to determine the effectiveness of current IVM training in preparing veterinary graduates to discuss or utilize IVM in practice.


Subject(s)
Education, Veterinary , Veterinary Medicine , Animals , Curriculum , Faculty , Humans , Schools, Veterinary , Surveys and Questionnaires
20.
Medicina (Kaunas) ; 57(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918198

ABSTRACT

Background and Objectives: The multidrug resistant (MDR) bacterial pathogenic infection is one of the chief worldwide public health threat to humanity. The development of novel antibiotics against MDR Gram negative bacteria has reduced over the last half century. Research is in progress regarding the treatment strategies that could be engaged in combination with antibiotics to extend the duration of these life-saving antibacterial agents. The current study was therefore planned to assess the synergistic effects of bovine lactoferrin (bLF) in combination with different antibiotics that are conventionally used. This synergism would provide a newer therapeutic choice against MDR pathogens. LF is present in mucosal secretions, vastly in milk. LF is considered an important constituent in host defense. In previous reports, LF has been co-administered as a combination antibiotic therapy. Materials and Methods: This study included synergistic (LF + appropriate antibiotic) exposure against 147 locally encountered bacterial pathogens, which were completely characterized strains. The anti-biofilm effects and the outcome of bLF on minimum inhibitory concentrations (MICs) of antibacterials on clinical MDR bacterial pathogens were determined by standard techniques. Results: In our study, synergism of bLF with antibacterial agents were reproducible and found to be significant. LF on its own had an important effect of inhibiting the biofilm production of some significant bacterial pathogens. Conclusion: The results of this study provides useful data on the antibacterial potential of the combination of LF with antibiotics against drug resistant pathogens.


Subject(s)
Anti-Infective Agents , Pharmaceutical Preparations , Anti-Bacterial Agents/pharmacology , Humans , Lactoferrin/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL