Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Int J Exp Pathol ; 104(2): 56-63, 2023 04.
Article in English | MEDLINE | ID: mdl-36843204

ABSTRACT

Degradation of the articular cartilage is a hallmark of osteoarthritis, a progressive and chronic musculoskeletal condition, affecting millions of people worldwide. The activation of several signalling cascades is altered during disease development: among them, the Wnt signalling plays a pivotal role in the maintenance of tissue homeostasis. Increasing evidence is showing that its activation needs to be maintained within a certain range to avoid the triggering of degenerative mechanisms. In this review, we summarise our current knowledge about how a balanced activation of the Wnt signalling is maintained in the articular cartilage, with a particular focus on receptor-mediated mechanisms.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Cartilage, Articular/metabolism , Wnt Signaling Pathway/physiology , Homeostasis , Chondrocytes/metabolism
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902143

ABSTRACT

The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.


Subject(s)
Heart , Proteomics , Animals , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Arrhythmias, Cardiac/metabolism
3.
Handb Exp Pharmacol ; 269: 337-356, 2021.
Article in English | MEDLINE | ID: mdl-34510305

ABSTRACT

Osteoarthritis (OA) is a highly disabling musculoskeletal condition affecting millions of people worldwide. OA is characterised by progressive destruction and irreversible morphological changes of joint tissues and architecture. At molecular level, de-regulation of several pathways contributes to the disruption of tissue homeostasis in the joint. Overactivation of the WNT/ß-catenin signalling pathway has been associated with degenerative processes in OA. However, the multiple layers of complexity in the modulation of the signalling and the still insufficient knowledge of the specific molecular drivers of pathogenetic mechanisms have made difficult the pharmacological targeting of this pathway for therapeutic purposes. This review aims to provide an overview of the WNT/ß-catenin signalling in OA with a particular focus on its role in the articular cartilage. Pathway components whose targeting showed therapeutic potential will be highlighted and described. A specific section will be dedicated to Lorecivivint, the first inhibitor of the ß-catenin-dependent pathway currently in phase III clinical trial as OA-modifying agent.


Subject(s)
Cartilage, Articular , Osteoarthritis , Homeostasis , Humans , Osteoarthritis/drug therapy , Wnt Signaling Pathway
4.
Ann Rheum Dis ; 76(1): 218-226, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27147711

ABSTRACT

OBJECTIVE: Both excessive and insufficient activation of WNT signalling results in cartilage breakdown and osteoarthritis. WNT16 is upregulated in the articular cartilage following injury and in osteoarthritis. Here, we investigate the function of WNT16 in osteoarthritis and the downstream molecular mechanisms. METHODS: Osteoarthritis was induced by destabilisation of the medial meniscus in wild-type and WNT16-deficient mice. Molecular mechanisms and downstream effects were studied in vitro and in vivo in primary cartilage progenitor cells and primary chondrocytes. The pathway downstream of WNT16 was studied in primary chondrocytes and using the axis duplication assay in Xenopus. RESULTS: WNT16-deficient mice developed more severe osteoarthritis with reduced expression of lubricin and increased chondrocyte apoptosis. WNT16 supported the phenotype of cartilage superficial-zone progenitor cells and lubricin expression. Increased osteoarthritis in WNT16-deficient mice was associated with excessive activation of canonical WNT signalling. In vitro, high doses of WNT16 weakly activated canonical WNT signalling, but, in co-stimulation experiments, WNT16 reduced the capacity of WNT3a to activate the canonical WNT pathway. In vivo, WNT16 rescued the WNT8-induced primary axis duplication in Xenopus embryos. CONCLUSIONS: In osteoarthritis, WNT16 maintains a balanced canonical WNT signalling and prevents detrimental excessive activation, thereby supporting the homeostasis of progenitor cells.


Subject(s)
Arthritis, Experimental/metabolism , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Wnt Proteins/physiology , Wnt Signaling Pathway/physiology , Animals , Apoptosis/physiology , Arthritis, Experimental/etiology , Arthritis, Experimental/pathology , Cartilage, Articular/pathology , Male , Mice, Knockout , Osteoarthritis/etiology , Osteoarthritis/pathology , Proteoglycans/biosynthesis , Proteoglycans/genetics , RNA, Messenger/genetics , Up-Regulation/physiology , Wnt Proteins/biosynthesis , Wnt Proteins/deficiency , Wnt Proteins/genetics
5.
Ann Rheum Dis ; 75(6): 1228-35, 2016 06.
Article in English | MEDLINE | ID: mdl-26290588

ABSTRACT

OBJECTIVES: Osteoarthritis (OA) is a leading cause of disability for which there is no cure. The identification of molecules supporting cartilage homeostasis and regeneration is therefore a major pursuit in musculoskeletal medicine. Agrin is a heparan sulfate proteoglycan which, through binding to low-density lipoprotein receptor-related protein 4 (LRP4), is required for neuromuscular synapse formation. In other tissues, it connects the cytoskeleton to the basement membrane through binding to α-dystroglycan. Prompted by an unexpected expression pattern, we investigated the role and receptor usage of agrin in cartilage. METHODS: Agrin expression pattern was investigated in human osteoarthritic cartilage and following destabilisation of the medial meniscus in mice. Extracellular matrix (ECM) formation and chondrocyte differentiation was studied in gain and loss of function experiments in vitro in three-dimensional cultures and gain of function in vivo, using an ectopic cartilage formation assay in nude mice. Receptor usage was investigated by disrupting LRP4 and α-dystroglycan by siRNA and blocking antibodies respectively. RESULTS: Agrin was detected in normal cartilage but was progressively lost in OA. In vitro, agrin knockdown resulted in reduced glycosaminoglycan content, downregulation of the cartilage transcription factor SOX9 and other cartilage-specific ECM molecules. Conversely, exogenous agrin supported cartilage differentiation in vitro and ectopic cartilage formation in vivo. In the context of cartilage differentiation, agrin used an unusual receptor repertoire requiring both LRP4 and α-dystroglycan. CONCLUSIONS: We have discovered that agrin strongly promotes chondrocyte differentiation and cartilage formation in vivo. Our results identify agrin as a novel potent anabolic growth factor with strong therapeutic potential in cartilage regeneration.


Subject(s)
Agrin/physiology , Arthritis, Experimental/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Dystroglycans/physiology , Osteoarthritis/metabolism , Receptors, LDL/physiology , Agrin/biosynthesis , Agrin/genetics , Agrin/pharmacology , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Cartilage, Articular/pathology , Cells, Cultured , Chondrogenesis/drug effects , Down-Regulation/physiology , Gene Knockdown Techniques , Homeostasis/physiology , Humans , LDL-Receptor Related Proteins/physiology , Male , Mice, Inbred DBA , Mice, Knockout , Osteoarthritis/genetics , Osteoarthritis/pathology , Osteogenesis/physiology , RNA, Messenger/genetics , RNA, Small Interfering/genetics , SOX9 Transcription Factor/biosynthesis , SOX9 Transcription Factor/genetics , Up-Regulation/physiology
6.
Ann Rheum Dis ; 74(12): 2207-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25135253

ABSTRACT

OBJECTIVE: ELR+ CXC chemokines are heparin-binding cytokines signalling through the CXCR1 and CXCR2 receptors. ELR+ CXC chemokines have been associated with inflammatory arthritis due to their capacity to attract inflammatory cells. Here, we describe an unsuspected physiological function of these molecules in articular cartilage homeostasis. METHODS: Chemokine receptors and ligands were detected by immunohistochemistry, western blotting and RT-PCR. Osteoarthritis was induced in wild-type and CXCR2(-/-) mice by destabilisation of the medial meniscus (DMM). CXCR1/2 signalling was inhibited in vitro using blocking antibodies or siRNA. Chondrocyte phenotype was analysed using Alcian blue staining, RT-PCR and western blotting. AKT phosphorylation and SOX9 expression were upregulated using constitutively active AKT or SOX9 plasmids. Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. RESULTS: CXCL6 was expressed in healthy cartilage and was retained through binding to heparan sulfate proteoglycans. CXCR2(-/-) mice developed more severe osteoarthritis than wild types following DMM, with increased chondrocyte apoptosis. Disruption of CXCR1/2 in human and CXCR2 signalling in mouse chondrocytes led to a decrease in extracellular matrix production, reduced expression of chondrocyte differentiation markers and increased chondrocyte apoptosis. CXCR2-dependent chondrocyte homeostasis was mediated by AKT signalling since forced expression of constitutively active AKT rescued the expression of phenotypic markers and the apoptosis induced by CXCR2 blockade. CONCLUSIONS: Our study demonstrates an important physiological role for CXCR1/2 signalling in maintaining cartilage homeostasis and suggests that the loss of ELR+ CXC chemokines during cartilage breakdown in osteoarthritis contributes to the characteristic loss of chondrocyte phenotypic stability.


Subject(s)
Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Receptors, Interleukin-8B/metabolism , Animals , Apoptosis , Blotting, Western , Cartilage, Articular/pathology , Cells, Cultured , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Homeostasis , Humans , Male , Mice , Mice, Inbred BALB C , Signal Transduction
7.
Arthritis Rheum ; 65(3): 743-52, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23233348

ABSTRACT

OBJECTIVE: Syndecan 4, a heparan sulfate proteoglycan, has been associated with osteoarthritis. The present study was undertaken to analyze the functional role of syndecan 4 in endochondral ossification of mouse embryos and in adult fracture repair, which, like osteoarthritis, involves an inflammatory component. METHODS: Sdc4 promoter activity was analyzed in Sdc4(-/-) lacZ-knockin mice, using ß-galactosidase staining. Endochondral ossification in embryos from embryonic day 16.5 was assessed by histologic and immunohistologic staining. Bone fracture repair was analyzed in femora of adult mice on days 7 and 14 postfracture. To evaluate Sdc2 and Sdc4 gene expression with and without tumor necrosis factor α (TNFα) and Wnt-3a stimulation, quantitative real-time polymerase chain reaction was performed. RESULTS: In Sdc4(-/-) lacZ-knockin animals, syndecan 4 promoter activity was detectable at all stages of chondrocyte differentiation, and Sdc4 deficiency inhibited chondrocyte proliferation. Aggrecan turnover in the uncalcified cartilage of the epiphysis was decreased transiently in vivo, but this did not lead to a growth phenotype at birth. In contrast, among adult mice, fracture healing was markedly delayed in Sdc4(-/-) animals and was accompanied by increased callus formation. Blocking of inflammation via anti-TNFα treatment during fracture healing reduced these changes in Sdc4(-/-) mice to levels observed in wild-type controls. We analyzed the differences between the mild embryonic and the severe adult phenotype, and found a compensatory up-regulation of syndecan 2 in the developing cartilage of Sdc4(-/-) mice that was absent in adult tissue. Stimulation of chondrocytes with Wnt-3a in vitro led to increased expression of syndecan 2, while stimulation with TNFα resulted in up-regulation of syndecan 4 but decreased expression of syndecan 2. TNFα stimulation reduced syndecan 2 expression and increased syndecan 4 expression even in the presence of Wnt-3a, suggesting that inflammation has a strong effect on the regulation of syndecan expression. CONCLUSION: Our results demonstrate that syndecan 4 is functionally involved in endochondral ossification and that its loss impairs fracture healing, due to inhibition of compensatory mechanisms under inflammatory conditions.


Subject(s)
Bone Development/physiology , Femoral Fractures/physiopathology , Fracture Healing/physiology , Syndecan-4/physiology , Animals , Cell Differentiation/physiology , Chondrocytes/cytology , Chondrocytes/physiology , Female , Femur/cytology , Femur/embryology , Femur/physiology , Growth Plate/cytology , Growth Plate/embryology , Growth Plate/physiology , Inflammation/physiopathology , Lac Operon/genetics , Male , Mice , Mice, Knockout , Osteogenesis/physiology , Pregnancy , Promoter Regions, Genetic/physiology , RNA, Messenger/metabolism , Syndecan-2/genetics , Syndecan-2/physiology , Syndecan-4/genetics , Tibia/cytology , Tibia/embryology , Tibia/physiology
8.
Cells ; 12(5)2023 02 22.
Article in English | MEDLINE | ID: mdl-36899825

ABSTRACT

Exposure to environmental pollutants has a proven detrimental impact on different aspects of human health. Increasing evidence has linked pollution to the degeneration of tissues in the joints, although through vastly uncharacterised mechanisms. We have previously shown that exposure to hydroquinone (HQ), a benzene metabolite that can be found in motor fuels and cigarette smoke, exacerbates synovial hypertrophy and oxidative stress in the synovium. To further understand the impact of the pollutant on joint health, here we investigated the effect of HQ on the articular cartilage. HQ exposure aggravated cartilage damage in rats in which inflammatory arthritis was induced by injection of Collagen type II. Cell viability, cell phenotypic changes and oxidative stress were quantified in primary bovine articular chondrocytes exposed to HQ in the presence or absence of IL-1ß. HQ stimulation downregulated phenotypic markers genes SOX-9 and Col2a1, whereas it upregulated the expression of the catabolic enzymes MMP-3 and ADAMTS5 at the mRNA level. HQ also reduced proteoglycan content and promoted oxidative stress alone and in synergy with IL-1ß. Finally, we showed that HQ-degenerative effects were mediated by the activation of the Aryl Hydrocarbon Receptor. Together, our findings describe the harmful effects of HQ on articular cartilage health, providing novel evidence surrounding the toxic mechanisms of environmental pollutants underlying the onset of articular diseases.


Subject(s)
Cartilage, Articular , Environmental Pollutants , Animals , Cattle , Rats , Cartilage, Articular/metabolism , Homeostasis , Hydroquinones/pharmacology , Receptors, Aryl Hydrocarbon/metabolism
9.
Lab Anim (NY) ; 51(4): 103-120, 2022 04.
Article in English | MEDLINE | ID: mdl-35361989

ABSTRACT

Cartilage regeneration is a priority in medicine for the treatment of osteoarthritis and isolated cartilage defects. Several molecules with potential for cartilage regeneration are under investigation. Unfortunately, in vitro chondrogenesis assays do not always predict the stability of the newly formed cartilage in vivo. Therefore, there is a need for a stringent, quantifiable assay to assess in vivo the capacity of molecules to promote the stable formation of cartilage that is resistant to calcification and endochondral bone formation. We developed an ectopic cartilage formation assay (ECFA) that enables one to assess the capacity of bioactive molecules to support cartilage formation in vivo using cartilage organoids. The ECFA predicted good clinical outcomes when used as a quality control for efficacy of chondrocyte preparations before implantation in patients with cartilage defects. In this assay, articular chondrocytes from human donors or animals are injected either intramuscularly or subcutaneously in nude mice. As early as 2 weeks later, cartilage organoids can be retrieved. The size of the implants and their degree of differentiation can be assessed by histomorphometry, immunostainings of molecular markers and real-time PCR. Mineralization can be assessed by micro-computed tomography or by staining. The effects of molecules on cartilage formation can be tested following the systemic administration of the molecule in mice previously injected with chondrocytes, or after co-injection of chondrocytes with cell lines overexpressing and secreting the protein of interest. Here we describe the ECFA procedure, including steps for harvesting human and bovine articular cartilage, isolating primary chondrocytes, preparing overexpression cell lines, injecting the cells intramuscularly and retrieving the implants. This assay can be performed by technicians and researchers with appropriate animal training within 3 weeks.


Subject(s)
Cartilage, Articular , Chondrogenesis , Animals , Cartilage, Articular/metabolism , Cattle , Chondrocytes/metabolism , Humans , Mice , Mice, Nude , X-Ray Microtomography
10.
Antioxidants (Basel) ; 10(6)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200499

ABSTRACT

Rheumatoid arthritis (RA) development is strongly associated with cigarette smoke exposure, which activates the aryl hydrocarbon receptor (AhR) as a trigger for Th17 inflammatory pathways. We previously demonstrated that the exposure to hydroquinone (HQ), one of the major compounds of cigarette tar, aggravates the arthritis symptomatology in rats. However, the mechanisms related to the HQ-related RA still remain elusive. Cell viability, cytokine secretion, and gene expression were measured in RA human fibroblast-like synoviocytes (RAHFLS) treated with HQ and stimulated or not with TNF-α. Antigen-induced arthritis (AIA) was also elicited in wild type (WT), AhR -/- or IL-17R -/- C57BL/6 mice upon daily exposure to nebulized HQ (25ppm) between days 15 to 21. At day 21, mice were challenged with mBSA and inflammatory parameters were assessed. The in vitro HQ treatment up-regulated TNFR1, TNFR2 expression, and increased ROS production. The co-treatment of HQ and TNF-α enhanced the IL-6 and IL-8 secretion. However, the pre-incubation of RAHFLS with an AhR antagonist inhibited the HQ-mediated cell proliferation and gene expression profile. About the in vivo approach, the HQ exposure worsened the AIA symptoms (edema, pain, cytokines secretion and NETs formation) in WT mice. These AIA effects were abolished in HQ-exposed AhR -/- and IL-17R -/- animals though. Our data demonstrated the harmful HQ influence over the onset of arthritis through the activation and proliferation of synoviocytes. The HQ-related RA severity was also associated with the activation of AhR and IL-17 pathways, highlighting how cigarette smoke compounds can contribute to the RA progression.

11.
J Extracell Vesicles ; 10(7): e12088, 2021 05.
Article in English | MEDLINE | ID: mdl-34025953

ABSTRACT

Cartilage defects repair poorly. Recent genetic studies suggest that WNT3a may contribute to cartilage regeneration, however the dense, avascular cartilage extracellular matrix limits its penetration and signalling to chondrocytes. Extracellular vesicles actively penetrate intact cartilage. This study investigates the effect of delivering WNT3a into large cartilage defects in vivo using exosomes as a delivery vehicle. Exosomes were purified by ultracentrifugation from conditioned medium of either L-cells overexpressing WNT3a or control un-transduced L-cells, and characterized by electron microscopy, nanoparticle tracking analysis and marker profiling. WNT3a loaded on exosomes was quantified by western blotting and functionally characterized in vitro using the SUPER8TOPFlash reporter assay and other established readouts including proliferation and proteoglycan content. In vivo pathway activation was assessed using TCF/Lef:H2B-GFP reporter mice. Wnt3a loaded exosomes were injected into the knees of mice, in which large osteochondral defects were surgically generated. The degree of repair was histologically scored after 8 weeks. WNT3a was successfully loaded on exosomes and resulted in activation of WNT signalling in vitro. In vivo, recombinant WNT3a failed to activate WNT signalling in cartilage, whereas a single administration of WNT3a loaded exosomes activated canonical WNT signalling for at least one week, and eight weeks later, improved the repair of osteochondral defects. WNT3a assembled on exosomes, is efficiently delivered into cartilage and contributes to the healing of osteochondral defects.


Subject(s)
Cartilage/metabolism , Exosomes/metabolism , Wnt3A Protein/metabolism , Animals , Cartilage/injuries , Cartilage, Articular/metabolism , Cell Differentiation , Cell Line , Chondrocytes/cytology , Culture Media, Conditioned/pharmacology , Drug Delivery Systems/methods , Exosomes/physiology , Extracellular Matrix/metabolism , Extracellular Vesicles/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Wnt Signaling Pathway , Wnt3A Protein/genetics
12.
Sci Rep ; 11(1): 5682, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707504

ABSTRACT

WNT ligands can activate several signalling cascades of pivotal importance during development and regenerative processes. Their de-regulation has been associated with the onset of different diseases. Here we investigated the role of the WNT/Calcium Calmodulin Kinase II (CaMKII) pathway in osteoarthritis. We identified Heme Oxygenase I (HMOX1) and Sox-9 as specific markers of the WNT/CaMKII signalling in articular chondrocytes through a microarray analysis. We showed that the expression of the activated form of CaMKII, phospho-CaMKII, was increased in human and murine osteoarthritis and the expression of HMOX1 was accordingly reduced, demonstrating the activation of the pathway during disease progression. To elucidate its function, we administered the CaMKII inhibitor KN93 to mice in which osteoarthritis was induced by resection of the anterior horn of the medial meniscus and of the medial collateral ligament in the knee joint. Pharmacological blockade of CaMKII exacerbated cartilage damage and bone remodelling. Finally, we showed that CaMKII inhibition in articular chondrocytes upregulated the expression of matrix remodelling enzymes alone and in combination with Interleukin 1. These results suggest an important homeostatic role of the WNT/CaMKII signalling in osteoarthritis which could be exploited in the future for therapeutic purposes.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cartilage, Articular/enzymology , Cartilage, Articular/pathology , Homeostasis , Osteoarthritis/enzymology , Osteoarthritis/pathology , Aged , Animals , Bone Remodeling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cattle , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Female , Gene Expression Regulation, Enzymologic , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Interleukin-1beta/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Models, Biological , Osteoarthritis/genetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcriptome/genetics , Up-Regulation , Wnt3 Protein/metabolism
13.
Sci Transl Med ; 12(561)2020 09 16.
Article in English | MEDLINE | ID: mdl-32938794

ABSTRACT

Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase-like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T1/2 cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade-induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis.


Subject(s)
Chondrogenesis , Osteoarthritis , Animals , Cell Differentiation , Chondrocytes , Mice , Mice, Nude , Osteoarthritis/drug therapy , Receptor Tyrosine Kinase-like Orphan Receptors
14.
Biochim Biophys Acta ; 1783(3): 347-59, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18157950

ABSTRACT

Platelet-derived growth factor (PDGF) has been shown to be essential in the activation of hepatic stellate cells (HSCs), contributing to the onset and development of hepatic fibrosis. Recently, sphingosine-1-phosphate (S1P) has been shown to be a mitogen and stimulator of chemotaxis also for HSCs. Since it has been demonstrated in several cell types that cross-talk between PDGF and S1P signalling pathways occurs, our aim was to investigate the potential antifibrotic effect of FTY720, whose phosphorylated form acts as a potent S1P receptor (S1PR) modulator, on HSCs. FTY720 inhibits cell proliferation and migration after PDGF stimulation on HSCs in a concentration range between 0.1 and 1 muM. By using compounds that block S1P signalling (PTX and VPC23019), we assessed that FTY720 also acts in an S1P receptor-independent way by decreasing the level of tyrosine phosphorylation of PDGF receptor, with subsequent inhibition of the PDGF signalling pathway. In addition, inhibition of sphingosine kinase2 (SphK2), which is responsible for FTY720 phosphorylation, by DMS/siRNA unveils a mechanism of action irrespective of its phosphorylation, in particular decreasing the level of S1P(1) on the plasma membrane. These findings led us to hypothesize a potential use of FTY720 as a potential antifibrotic drug for further clinical application.


Subject(s)
Liver Cirrhosis/prevention & control , Lysophospholipids/physiology , Platelet-Derived Growth Factor/physiology , Propylene Glycols/pharmacology , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Fingolimod Hydrochloride , Immunologic Factors/pharmacology , Liver/drug effects , Lysophospholipids/metabolism , Male , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Protein Transport/drug effects , Rats , Rats, Wistar , Receptor Cross-Talk/drug effects , Sphingosine/metabolism , Sphingosine/pharmacology , Sphingosine/physiology
16.
Expert Rev Mol Diagn ; 18(1): 55-74, 2018 01.
Article in English | MEDLINE | ID: mdl-29235389

ABSTRACT

INTRODUCTION: Osteoarthritis (OA), a chronic, debilitating and degenerative disease of the joints, is the most common form of arthritis. The seriousness of this prevalent and chronic disease is often overlooked. Disease modifying OA drug development is hindered by the lack of soluble biomarkers to detect OA early. The objective of OA biomarker research is to identify early OA prior to the appearance of radiographic signs and the development of pain. Areas covered: This review has focused on extracellular genomic material that could serve as biomarkers of OA. Recent studies have examined the expression of extracellular genomic material such as miRNA, lncRNA, snoRNA, mRNA and cell-free DNA, which are aberrantly expressed in the body fluids of OA patients. Changes in genomic content of peripheral blood mononuclear cells in OA could also function as biomarkers of OA. Expert commentary: There is an unmet need for soluble biomarkers for detecting and then monitoring OA disease progression. Extracellular genomic material research may also reveal more about the underlying pathophysiology of OA. Minimally-invasive liquid biopsies such as synovial fluid and blood sampling of genomic material may be more sensitive over radiography in the detection, diagnosis and monitoring of OA in the future.


Subject(s)
Biomarkers , Genomics , Osteoarthritis/diagnosis , Osteoarthritis/genetics , Animals , Disease Progression , Extracellular Space/genetics , Genomics/methods , Humans , Liquid Biopsy , Sensitivity and Specificity , Synovial Fluid
17.
Ageing Res Rev ; 40: 20-30, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28774716

ABSTRACT

Osteoarthritis (OA), is a major cause of severe joint pain, physical disability and quality of life impairment in the aging population across the developed and developing world. Increased catabolism in the extracellular matrix (ECM) of the articular cartilage is a key factor in the development and progression of OA. The molecular mechanisms leading to an impaired matrix turnover have not been fully clarified, however cellular senescence, increased expression of inflammatory mediators as well as oxidative stress in association with an inherently limited regenerative potential of the tissue, are all important contributors to OA development. All these factors are linked to and tend to be maximized by aging. Nonetheless the role of aging in compromising joint stability and function in OA has not been completely clarified yet. This review will systematically analyze cellular and structural changes taking place in the articular cartilage and bone in the pathogenesis of OA which are linked to aging. A particular emphasis will be placed on age-related changes in the phenotype of the articular chondrocytes.


Subject(s)
Aging/metabolism , Extracellular Matrix/metabolism , Osteoarthritis/metabolism , Aging/drug effects , Aging/pathology , Animals , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cellular Senescence/drug effects , Cellular Senescence/physiology , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Progression , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Humans , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Quality of Life
18.
Biores Open Access ; 3(1): 9-18, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24570841

ABSTRACT

Culture conditions that preserve a stable chondrocyte phenotype are desirable in cell-based cartilage repair to maximize efficacy and clinical outcome. This study investigates whether low-glucose conditions will preserve the chondrocyte phenotype during culture expansion. Articular chondrocytes were culture-expanded in media supplemented with either low (1 mM) or high (10 mM) glucose. The metabolic phenotype, reactive oxygen species generation, and mRNA expression of markers of differentiation or catabolism were assessed by reverse-transcription quantitative polymerase chain reaction after four population doublings (PDs) and subsequent tissue formation capacity determined using pellet cultures. Continuous monolayer culture was used to determine the population doubling limit. After expansion in monolayer for four PDs, chondrocytes expanded in low-glucose conditions exhibited higher expression of the differentiation markers SOX9 and COL2A1 and reduced expression of the catabolic metalloproteinase matrix metallopeptidase 13. When chondrocytes expanded in low glucose were cultured in micropellets, they consistently generated more cartilaginous extracellular matrix than those expanded in high glucose, as evaluated by wet weight, sulfated glycosaminoglycan content, and hydroxyproline assay for collagen content. The same pattern was observed whether high or low glucose was used during the pellet culture. During expansion, chondrocytes in high-glucose generated 50% more reactive oxygen species than low-glucose conditions, despite a lower dependence on oxidative phosphorylation for energy. Furthermore low-glucose cells exhibited >30% increased population doubling limit. These data suggests that low-glucose expansion conditions better preserve the expression of differentiation markers by chondrocytes and enhance their subsequent capacity to form cartilage in vitro. Therefore, low glucose levels should be considered for the expansion of chondrocytes intended for tissue engineering applications.

19.
Biochem Pharmacol ; 91(3): 348-58, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25117448

ABSTRACT

INTRODUCTION: Calcitonin (CT) has recently been shown to display chondroprotective effects. Here, we investigate the putative mechanisms by which CT delivers these actions. METHODS: Immortalized C-28/I2 cells or primary adult human articular chondrocytes (AHAC) were cultured in high-density micromasses to investigate: (i) CT anabolic effects using qPCR and immuhistochemistry analysis; (ii) CT anti-apoptotic effects using quantitation of Bax/Bcl gene products ratio, TUNEL assay and caspase-3 expression; (iii) CT effects on CREB, COL2A1 and NFAT transcription factors. RESULTS: CT (10(-10)-10(-8)nM) induced significant up-regulation of cartilage phenotypic markers (SOX9, COL2A1 and ACAN), with down-regulation of catabolic (MMP1 and MMP13 and ADAMTS5) gene products both in resting and inflammatory conditions. This was mirrored by an augmented production of type II collagen and accumulation of glycosaminoglycan- and proteoglycan-rich extracellular matrix in vitro. Mechanistic analyses revealed only partial involvement of cyclic AMP formation in these effects of CT. Congruently, using reporter assays for specific transcription factors, there was no indication for CREB activation, whereas the COL2A1 promoter was genuinely and directly activated by cell exposure to CT. Phenotypically, these mechanisms supported the ability of CT, whilst inactive on its own, to counteract the pro-apoptotic effects of IL-1ß, demonstrated by TUNEL-positive staining of chondrocytes and ratio of BAX/BCL genes products. CONCLUSION: These data may provide a novel lead for the development of CT-based chondroprotective strategies that rely on the engagement of mechanisms that lead to augmented chondrocyte anabolism and inhibited chondrocyte apoptosis.


Subject(s)
Calcitonin/pharmacology , Chondrocytes/drug effects , Chondrocytes/metabolism , Protective Agents/pharmacology , ADAM Proteins/metabolism , ADAMTS5 Protein , Aggrecans/metabolism , Apoptosis/drug effects , Biomarkers/metabolism , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Cells, Cultured , Collagen Type II/biosynthesis , Collagen Type II/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Glycosaminoglycans/biosynthesis , Humans , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 13/metabolism , SOX9 Transcription Factor/metabolism , Signal Transduction/drug effects
20.
Pharmacol Res Perspect ; 1(2): e00019, 2013 Dec.
Article in English | MEDLINE | ID: mdl-25505571

ABSTRACT

Chemokine receptor antagonists appear to access two distinct binding sites on different members of this receptor family. One class of CCR4 antagonists has been suggested to bind to a site accessible from the cytoplasm while a second class did not bind to this site. In this report, we demonstrate that antagonists representing a variety of structural classes bind to two distinct allosteric sites on CCR4. The effects of pairs of low-molecular weight and/or chemokine CCR4 antagonists were evaluated on CCL17- and CCL22-induced responses of human CCR4(+) T cells. This provided an initial grouping of the antagonists into sets which appeared to bind to distinct binding sites. Binding studies were then performed with radioligands from each set to confirm these groupings. Some novel receptor theory was developed to allow the interpretation of the effects of the antagonist combinations. The theory indicates that, generally, the concentration-ratio of a pair of competing allosteric modulators is maximally the sum of their individual effects while that of two modulators acting at different sites is likely to be greater than their sum. The low-molecular weight antagonists could be grouped into two sets on the basis of the functional and binding experiments. The antagonistic chemokines formed a third set whose behaviour was consistent with that of simple competitive antagonists. These studies indicate that there are two allosteric regulatory sites on CCR4.

SELECTION OF CITATIONS
SEARCH DETAIL