Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Publication year range
1.
J Physiol ; 602(2): 355-372, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38165402

ABSTRACT

This study aimed to determine which physiological factors impact net efficiency (ηnet) in oldest-old individuals at different stages of skeletal muscle disuse. To this aim, we examined ηnet, central haemodynamics, peripheral circulation, and peripheral factors (skeletal muscle fibre type, capillarization and concentration of mitochondrial DNA [mtDNA]). Twelve young (YG; 25 ± 2 years), 12 oldest-old mobile (OM; 87 ± 3 years), and 12 oldest-old immobile (OI; 88 ± 4 years) subjects performed dynamic knee extensor (KE) and elbow flexors (EF) exercise. Pulmonary oxygen uptake, photoplethysmography, Doppler ultrasound and muscle biopsies of the vastus lateralis and biceps brachii were used to assess central and peripheral adaptations to advanced ageing and disuse. Compared to the YG (12.1 ± 2.4%), the ηnet of lower-limb muscle was higher in the OM (17.6 ± 3.5%, P < 0.001), and lower in the OI (8.9 ± 1.9%, P < 0.001). These changes in ηnet during KE were coupled with significant peripheral adaptations, revealing strong correlations between ηnet and the proportion of type I muscle fibres (r = 0.82), as well as [mtDNA] (r = 0.77). No differences in ηnet were evident in the upper-limb muscles between YG, OM and OI. In view of the differences in limb-specific activity across the lifespan, these findings suggest that ηnet is reduced by skeletal muscle inactivity and not by chronological age, per se. Likewise, this study revealed that the age-related changes in ηnet are not a consequence of central or peripheral haemodynamic adaptations, but are likely a product of peripheral changes related to skeletal muscle fibre type and mitochondrial density. KEY POINTS: Although the effects of ageing and muscle disuse deeply impact the cardiovascular and skeletal muscle function, the combination of these factors on the mechanical efficiency are still a matter of debate. By measuring both upper- and lower-limb muscle function, which experience differing levels of disuse, we examined the influence of central and peripheral haemodynamics, and skeletal muscle factors linked to mechanical efficiency. Across the ages and degree of disuse, upper-limb muscles exhibited a preserved work economy. In the legs the oldest-old without mobility limitations exhibited an augmented mechanical efficiency, which was reduced in those with an impairment in ambulation. These changes in mechanical efficiency were associated with the proportion of type I muscle fibres. Recognition that the mechanical efficiency is not simply age-dependent, but the consequence of inactivity and subsequent skeletal muscle changes, highlights the importance of maintaining physical activity across the lifespan.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Humans , Aged, 80 and over , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/physiology , Aging/physiology , Lower Extremity , DNA, Mitochondrial
2.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955722

ABSTRACT

3'-5' cyclic nucleotide phosphodiesterases (PDEs) are a family of evolutionarily conserved cAMP and/or cGMP hydrolyzing enzymes, components of transduction pathways regulating crucial aspects of cell life. Among them, cGMP-specific PDE5-being a regulator of vascular smooth muscle contraction-is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Production of full-length murine PDE5A isoforms in the milk-yeast Kluyveromyces lactis showed that the quaternary assembly of MmPDE5A1 is a mixture of dimers and tetramers, while MmPDE5A2 and MmPDE5A3 only assembled as dimers. We showed that the N-terminal peptide is responsible for the tetramer assembly of MmPDE5A1, while that of the MmPDE5A2 is responsible for its mitochondrial localization. Overexpression of the three isoforms alters at different levels the cAMP/cGMP equilibrium as well as the NAD(P)+/NAD(P)H balance and induces a metabolic switch from oxidative to fermentative. In particular, the mitochondrial localization of MmPDE5A2 unveiled the existence of a cAMP-cGMP signaling cascade in this organelle, for which we propose a metabolic model that could explain the role of PDE5 in some cardiomyopathies and some of the side effects of its inhibitors.


Subject(s)
Cyclic GMP , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , NAD , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Animals , Cyclic GMP/metabolism , Male , Mice , NAD/metabolism , Oxidation-Reduction , Protein Isoforms/metabolism
3.
Int J Mol Sci ; 24(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36614143

ABSTRACT

Phosphodiesterase 5A (PDE5A) is involved in cGMP hydrolysis, regulating many physiological processes. Increased activity of PDE5A has been found in several pathological conditions, and the pharmacological inhibition of PDE5 has been demonstrated to have several therapeutic applications. We have identified the presence of three different Pde5a isoforms in cardiomyocytes, and we have found that the expression of specific Pde5a isoforms may have a causal role in the onset of pathological responses in these cells. In our previous study, we demonstrated that PDE5A inhibition could ameliorate muscular dystrophy by acting at different levels, as assessed by the altered genomic response of muscular cells following treatment with the PDE5A inhibitor tadalafil. Thus, considering the importance of PDE5A in various pathophysiological conditions, we further investigated the regulation of this enzyme. Here, we analysed the expression of Pde5a isoforms in the pathophysiology of skeletal muscle. We found that skeletal muscle tissues and myogenic cells express Pde5a1 and Pde5a2 isoforms, and we observed an increased expression of Pde5a1 in damaged skeletal muscles, while Pde5a2 levels remained unchanged. We also cloned and characterized the promoters that control the transcription of Pde5a isoforms, investigating which of the transcription factors predicted by bioinformatics analysis could be involved in their modulation. In conclusion, we found an overexpression of Pde5a1 in compromised muscle and identified an involvement of MyoD and Runx1 in Pde5a1 transcriptional activity.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases , Signal Transduction , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Cyclic GMP/metabolism , Muscle, Skeletal/metabolism
4.
J Cell Sci ; 132(5)2019 03 04.
Article in English | MEDLINE | ID: mdl-30745336

ABSTRACT

Ataxia telangiectasia is a rare, multi system disease caused by ATM kinase deficiency. Atm-knockout mice recapitulate premature aging, immunodeficiency, cancer predisposition, growth retardation and motor defects, but not cerebellar neurodegeneration and ataxia. We explored whether Atm loss is responsible for skeletal muscle defects by investigating myofiber morphology, oxidative/glycolytic activity, myocyte ultrastructural architecture and neuromuscular junctions. Atm-knockout mice showed reduced muscle and fiber size. Atrophy, protein synthesis impairment and a switch from glycolytic to oxidative fibers were detected, along with an increase of in expression of slow and fast myosin types (Myh7, and Myh2 and Myh4, respectively) in tibialis anterior and solei muscles isolated from Atm-knockout mice. Transmission electron microscopy of tibialis anterior revealed misalignments of Z-lines and sarcomeres and mitochondria abnormalities that were associated with an increase in reactive oxygen species. Moreover, neuromuscular junctions appeared larger and more complex than those in Atm wild-type mice, but with preserved presynaptic terminals. In conclusion, we report for the first time that Atm-knockout mice have clear morphological skeletal muscle defects that will be relevant for the investigation of the oxidative stress response, motor alteration and the interplay with peripheral nervous system in ataxia telangiectasia.


Subject(s)
Aging, Premature/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia/metabolism , Immunologic Deficiency Syndromes/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Neoplasms/genetics , Animals , Ataxia Telangiectasia/physiopathology , Cells, Cultured , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Muscle, Skeletal/abnormalities , Muscle, Skeletal/ultrastructure , Reactive Oxygen Species/metabolism , Sarcomeres/ultrastructure
5.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807511

ABSTRACT

3'-5' cyclic nucleotide phosphodiesterases (PDEs) are a large family of enzymes playing a fundamental role in the control of intracellular levels of cAMP and cGMP. Emerging evidence suggested an important role of phosphodiesterases in heart formation, but little is known about the expression of phosphodiesterases during cardiac development. In the present study, the pattern of expression and enzymatic activity of phosphodiesterases was investigated at different stages of heart formation. C57BL/6 mice were mated and embryos were collected from 14.5 to 18.5 days of development. Data obtained by qRT-PCR and Western blot analysis showed that seven different isoforms are expressed during heart development, and PDE1C, PDE2A, PDE4D, PDE5A and PDE8A are modulated from E14.5 to E18.5. In heart homogenates, the total cAMP and cGMP hydrolytic activity is constant at the evaluated times, and PDE4 accounts for the majority of the cAMP hydrolyzing ability and PDE2A accounts for cGMP hydrolysis. This study showed that a subset of PDEs is expressed in developing mice heart and some of them are modulated to maintain constant nucleotide phosphodiesterase activity in embryonic and fetal heart.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Fetal Heart/metabolism , Phosphoric Diester Hydrolases/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Animals , Cyclic AMP , Cyclic GMP/metabolism , Female , Fetal Heart/drug effects , Male , Mice , Mice, Inbred C57BL , Phosphodiesterase Inhibitors/pharmacology
6.
Eur J Appl Physiol ; 120(10): 2233-2245, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32728820

ABSTRACT

PURPOSE: Vascular dysfunction has been demonstrated in patients with Alzheimer's disease (AD). Exercise is known to positively affect vascular function. Thus, the aim of our study was to investigate exercise-induced effects on vascular function in AD. METHODS: Thirty-nine patients with AD (79 ± 8 years) were recruited and randomly assigned to exercise training (EX, n = 20) or control group (CTRL, n = 19). All subjects performed 72 treatment sessions (90 min, 3 t/w). EX included moderate-high-intensity aerobic and strength training. CTRL included cognitive stimuli (visual, verbal, auditive). Before and after the 6-month treatment, the vascular function was measured by passive-leg movement test (PLM, calculating the variation in blood flow: ∆peak; and area under the curve: AUC) tests, and flow-mediated dilation (FMD, %). A blood sample was analyzed for vascular endothelial growth factor (VEGF). Arterial blood flow (BF) and shear rate (SR) were measured during EX and CTRL during a typical treatment session. RESULTS: EX group has increased FMD% (+ 3.725%, p < 0.001), PLM ∆peak (+ 99.056 ml/min, p = 0.004), AUC (+ 37.359AU, p = 0.037) and VEGF (+ 8.825 pg/ml, p = 0.004). In the CTRL group, no difference between pre- and post-treatment was found for any variable. Increase in BF and SR was demonstrated during EX (BF + 123%, p < 0.05; SR + 134%, p < 0.05), but not during CTRL treatment. CONCLUSION: Exercise training improves peripheral vascular function in AD. These ameliorations may be due to the repetitive increase in SR during exercise which triggers NO and VEGF upregulation. This approach might be included in standard AD clinical practice as an effective strategy to treat vascular dysfunction in this population.


Subject(s)
Alzheimer Disease/therapy , Exercise Therapy/methods , Hemodynamics , Vascular Endothelial Growth Factor A/blood , Acoustic Stimulation/methods , Aged , Aged, 80 and over , Cognition , Female , Humans , Male , Movement , Photic Stimulation/methods
7.
Int J Mol Sci ; 21(15)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727145

ABSTRACT

In March 2020, the World Health Organization declared the severe acute respiratory syndrome corona virus 2 (SARS-CoV2) infection to be a pandemic disease. SARS-CoV2 was first identified in China and, despite the restrictive measures adopted, the epidemic has spread globally, becoming a pandemic in a very short time. Though there is growing knowledge of the SARS-CoV2 infection and its clinical manifestations, an effective cure to limit its acute symptoms and its severe complications has not yet been found. Given the worldwide health and economic emergency issues accompanying this pandemic, there is an absolute urgency to identify effective treatments and reduce the post infection outcomes. In this context, phosphodiesterases (PDEs), evolutionarily conserved cyclic nucleotide (cAMP/cGMP) hydrolyzing enzymes, could emerge as new potential targets. Given their extended distribution and modulating role in nearly all organs and cellular environments, a large number of drugs (PDE inhibitors) have been developed to control the specific functions of each PDE family. These PDE inhibitors have already been used in the treatment of pathologies that show clinical signs and symptoms completely or partially overlapping with post-COVID-19 conditions (e.g., thrombosis, inflammation, fibrosis), while new PDE-selective or pan-selective inhibitors are currently under study. This review discusses the state of the art of the different pathologies currently treated with phosphodiesterase inhibitors, highlighting the numerous similarities with the disorders linked to SARS-CoV2 infection, to support the hypothesis that PDE inhibitors, alone or in combination with other drugs, could be beneficial for the treatment of COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Phosphodiesterase Inhibitors/therapeutic use , Pneumonia, Viral/drug therapy , Pulmonary Fibrosis/prevention & control , Betacoronavirus/drug effects , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/complications , Coronavirus Infections/metabolism , Disease Progression , Humans , Pandemics , Phosphodiesterase Inhibitors/pharmacology , Pneumonia, Viral/complications , Pneumonia, Viral/metabolism , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , SARS-CoV-2 , Signal Transduction/drug effects , Treatment Outcome
8.
Int J Mol Sci ; 21(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326334

ABSTRACT

Phosphodiesterase 2A (PDE2A) is a cAMP-cGMP hydrolyzing enzyme essential for mouse development and the PDE2A knockout model (PDE2A-/-) is embryonic lethal. Notably, livers of PDE2A-/- embryos at embryonic day 14.5 (E14.5) have extremely reduced size. Morphological, cellular and molecular analyses revealed loss of integrity in the PDE2A-/- liver niche that compromises the hematopoietic function and maturation. Hematopoietic cells isolated from PDE2A-/- livers are instead able to differentiate in in vitro assays, suggesting the absence of blood cell-autonomous defects. Apoptosis was revealed in hepatoblasts and at the endothelial and stromal compartments in livers of PDE2A-/- embryos. The increase of the intracellular cAMP level and of the inducible cAMP early repressor (ICER) in liver of PDE2A-/- embryos might explain the impairment of liver development by downregulating the expression of the anti-apoptotic gene Bcl2. In summary, we propose PDE2A as an essential gene for integrity maintenance of liver niche and the accomplishment of hematopoiesis.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Hematopoiesis/genetics , Liver/embryology , Liver/metabolism , Organogenesis/genetics , Animals , Apoptosis/genetics , Biomarkers , Cell Differentiation , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Genotype , Immunohistochemistry , Mice , Mice, Transgenic , Mutation , Stem Cells/cytology , Stem Cells/metabolism , Stromal Cells/metabolism
9.
J Cell Physiol ; 233(11): 8411-8417, 2018 11.
Article in English | MEDLINE | ID: mdl-29797572

ABSTRACT

Different adipose tissue (AT) depots are associated with multiple metabolic risks. Phosphodiesterase type 5 (PDE5) is involved in adipocyte physiology and PDE5 inhibition may affect adipogenesis and ameliorate white AT quality. The aim of this study is to investigate the distribution of AT and the composition of the stroma-vascular fraction (SVF) of subcutaneous AT (SAT) in type 2 diabetic mice after prolonged treatment with a PDE5 inhibitor, Sildenafil. 18 db/db mice were treated with Sildenafil or vehicle for 12 weeks. AT distribution was monitored and SAT was processed for isolation of SVF by flow cytometry. Sildenafil induced an overall reduction in AT, mainly in visceral AT (VAT), compared with SAT. In Sildenafil-treated mice, the mean change in body weight from baseline positively correlated with VAT, but not with SAT. Characterization of SVF of SAT showed an increase in the frequency of M2 macrophages and endothelial cells in treated mice. Sildenafil improved the maintenance of SAT homeostasis and distribution.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Phosphodiesterase 5 Inhibitors/administration & dosage , Sildenafil Citrate/administration & dosage , Adipocytes/drug effects , Adipogenesis/drug effects , Animals , Cell Plasticity/drug effects , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Humans , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/pathology , Mice , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Subcutaneous Fat/pathology
10.
J Cell Physiol ; 233(1): 325-337, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28247930

ABSTRACT

Phosphodiesterase 5A (PDE5A) specifically degrades the ubiquitous second messenger cGMP and experimental and clinical data highlight its important role in cardiac diseases. To address PDE5A role in cardiac physiology, three splice variants of the PDE5A were cloned for the first time from mouse cDNA library (mPde5a1, mPde5a2, and mPde5a3). The predicted amino acidic sequences of the three murine isoforms are different in the N-terminal regulatory domain. mPDE5A isoforms were transfected in HEK293T cells and they showed high affinity for cGMP and similar sensitivity to sildenafil inhibition. RT-PCR analysis showed that mPde5a1, mPde5a2, and mPde5a3 had differential tissue distribution. In the adult heart, mPde5a1 and mPde5a2 were expressed at different levels whereas mPde5a3 was undetectable. Overexpression of mPDE5As induced an increase of HL-1 number cells which progress into cell cycle. mPDE5A1 and mPDE5A3 overexpression increased the number of polyploid and binucleated cells, mPDE5A3 widened HL-1 areas, and modulated hypertrophic markers more efficiently respect to the other mPDE5A isoforms. Moreover, mPDE5A isoforms had differential subcellular localization: mPDE5A1 was mainly localized in the cytoplasm, mPDE5A2 and mPDE5A3 were also nuclear localized. These results demonstrate for the first time the existence of three PDE5A isoforms in mouse and highlight their potential role in the induction of hypertrophy.


Subject(s)
Cardiomegaly/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Myocytes, Cardiac/enzymology , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Cell Cycle , Cell Nucleus/enzymology , Cell Nucleus/pathology , Cell Proliferation , Cloning, Molecular , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Cytosol/enzymology , Female , Flow Cytometry , Gene Expression Regulation, Enzymologic , HEK293 Cells , Humans , Male , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , NIH 3T3 Cells , Phosphodiesterase 5 Inhibitors/pharmacology , Polyploidy , Protein Isoforms , Signal Transduction , Sildenafil Citrate/pharmacology , Transfection
11.
Circ Res ; 119(8): 931-43, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27576469

ABSTRACT

RATIONALE: In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. OBJECTIVE: This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. METHODS AND RESULTS: We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced ß2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of ß2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. CONCLUSIONS: In hypertrophic rabbit myocytes, selectively enhanced ß2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine ß2 adrenergic receptor signaling and restore myocyte contractility in response to ß adrenergic stimulation.


Subject(s)
Biosensing Techniques/methods , Cyclic AMP-Dependent Protein Kinases/metabolism , Heart Failure/enzymology , Heart Failure/genetics , Myofibrils/enzymology , Myofibrils/genetics , Animals , Cells, Cultured , Myocytes, Cardiac/enzymology , Phosphorylation/physiology , Rabbits
12.
Biochim Biophys Acta Gen Subj ; 1862(10): 2183-2190, 2018 10.
Article in English | MEDLINE | ID: mdl-30025857

ABSTRACT

BACKGROUND: Phosphodiesterases (PDEs) are a superfamily of evolutionary conserved cyclic nucleotides (cAMP/cGMP) hydrolysing enzymes, components of transduction pathways regulating crucial aspects of cell life. PDE5, one of these families, is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Despite its medical relevance, PDE5 macromolecular structure has only been solved for the isolated regulatory and catalytic domains. The definition of the quaternary structure of the full length PDE5 (MmPDE5A1), produced in large amounts in the yeast Kluyveromyces lactis, could greatly enhance the knowledge on its assembly/allosteric regulation and the development of new inhibitors for clinical-therapeutic applications. METHODS: Small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), size exclusion chromatography (SEC), native polyacrylamide gel electrophoresis (PAGE) and western blot (WB) were used to assess the assembly of PDE5A1. RESULTS: The full length MmPDE5A1 isoform is a mixture of dimers and tetramers in solution. We also report data showing that dimers and tetramers also coexist in vivo in platelets, blood components naturally containing high levels of PDE5. CONCLUSIONS: This is the first time that structural studies on the full length protein evidenced the assembly of PDE5 in tetramers in addition to the expected dimers. GENERAL SIGNIFICANCE: The assembly of PDE5 in tetramers in platelets, beside the dimers, opens the possibility to alternative assembly/allosteric regulation of this enzyme, as component of large signaling complexes, in all cellular districts in which PDE5 is present.


Subject(s)
Blood Platelets/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Protein Multimerization , Protein Structure, Quaternary , Allosteric Regulation , Animals , Catalytic Domain , Rats , Scattering, Small Angle
13.
Microb Cell Fact ; 16(1): 159, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-28938916

ABSTRACT

BACKGROUND: Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. RESULTS: Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying Km, Vmax and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. CONCLUSIONS: To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Gene Expression , Kluyveromyces/genetics , Promoter Regions, Genetic , Animals , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Genetic Engineering , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Kluyveromyces/metabolism , Mice , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
14.
Int J Mol Sci ; 18(8)2017 Aug 19.
Article in English | MEDLINE | ID: mdl-28825628

ABSTRACT

The association of lysosomal dysfunction and neurodegeneration has been documented in several neurodegenerative diseases, including Alzheimer's Disease (AD). Herein, we investigate the association of lysosomal enzymes with AD at different stages of progression of the disease (mild and severe) or with mild cognitive impairment (MCI). We conducted a screening of two classes of lysosomal enzymes: glycohydrolases (ß-Hexosaminidase, ß-Galctosidase, ß-Galactosylcerebrosidase, ß-Glucuronidase) and proteases (Cathepsins S, D, B, L) in peripheral blood samples (blood plasma and PBMCs) from mild AD, severe AD, MCI and healthy control subjects. We confirmed the lysosomal dysfunction in severe AD patients and added new findings enhancing the association of abnormal levels of specific lysosomal enzymes with the mild AD or severe AD, and highlighting the difference of AD from MCI. Herein, we showed for the first time the specific alteration of ß-Galctosidase (Gal), ß-Galactosylcerebrosidase (GALC) in MCI patients. It is notable that in above peripheral biological samples the lysosomes are more sensitive to AD cellular metabolic alteration when compared to levels of Aß-peptide or Tau proteins, similar in both AD groups analyzed. Collectively, our findings support the role of lysosomal enzymes as potential peripheral molecules that vary with the progression of AD, and make them useful for monitoring regenerative medicine approaches for AD.


Subject(s)
Alzheimer Disease/blood , Cognitive Dysfunction/blood , Galactosylceramidase/blood , beta-Galactosidase/blood , Aged , Aged, 80 and over , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Amyloid beta-Peptides/blood , Cognitive Dysfunction/enzymology , Cognitive Dysfunction/pathology , Disease Progression , Female , Gene Expression Regulation , Humans , Lysosomes/enzymology , Male , Regenerative Medicine , Severity of Illness Index , tau Proteins/blood
15.
J Mol Cell Cardiol ; 98: 146-58, 2016 09.
Article in English | MEDLINE | ID: mdl-27418252

ABSTRACT

Proper ß-adrenergic signaling is indispensable for modulating heart frequency. Studies on extremely-low-frequency pulsed electromagnetic field (ELF-PEMF) effects in the heart beat function are contradictory and no definitive conclusions were obtained so far. To investigate the interplay between ELF-PEMF exposure and ß-adrenergic signaling, cultures of primary murine neonatal cardiomyocytes and of sinoatrial node were exposed to ELF-PEMF and short and long-term effects were evaluated. The ELF-PEMF generated a variable magnetic induction field of 0-6mT at a frequency of 75Hz. Exposure to 3mT ELF-PEMF induced a decrease of contraction rate, Ca(2+) transients, contraction force, and energy consumption both under basal conditions and after ß-adrenergic stimulation in neonatal cardiomyocytes. ELF-PEMF exposure inhibited ß-adrenergic response in sinoatrial node (SAN) region. ELF-PEMF specifically modulated ß2 adrenergic receptor response and the exposure did not modify the increase of contraction rate after adenylate cyclase stimulation by forskolin. In HEK293T cells transfected with ß1 or ß2 adrenergic receptors, ELF-PEMF exposure induced a rapid and selective internalization of ß2 adrenergic receptor. The ß-adrenergic signaling, was reduced trough Gi protein by ELF-PEMF exposure since the phosphorylation level of phospholamban and the PI3K pathway were impaired after isoproterenol stimulation in neonatal cardiomyocytes. Long term effects of ELF-PEMF exposure were assessed in cultures of isolated cardiomyocytes. ELF-PEMF counteracts cell size increase, the generation of binucleated of cardiomyocytes and prevents the up-regulation of hypertrophic markers after ß-adrenergic stimulation, indicating an inhibition of cell growth and maturation. These data show that short and long term exposure to ELF-PEMF induces a reduction of cardiac ß-adrenergic response at molecular, functional and adaptative levels.


Subject(s)
Electromagnetic Fields , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Receptors, Adrenergic, beta/metabolism , Adrenergic beta-Agonists/pharmacology , Algorithms , Animals , Calcium/metabolism , Calcium Signaling , Energy Metabolism/drug effects , Energy Metabolism/radiation effects , Mice , Models, Biological , Myocardial Contraction/drug effects , Myocardial Contraction/radiation effects , Myocytes, Cardiac/drug effects , Receptors, Adrenergic, beta/genetics , Signal Transduction/drug effects , Signal Transduction/radiation effects , Sinoatrial Node/drug effects , Sinoatrial Node/physiology , Sinoatrial Node/radiation effects
16.
J Cell Physiol ; 231(1): 224-32, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26097015

ABSTRACT

Numerous therapeutic approaches for Duchenne and Becker Muscular Dystrophy (DMD and BMD), the most common X-linked muscle degenerative disease, have been proposed. So far, the only one showing a clear beneficial effect is the use of corticosteroids. Recent evidence indicates an improvement of dystrophic cardiac and skeletal muscles in the presence of sustained cGMP levels secondary to a blocking of their degradation by phosphodiesterase five (PDE5). Due to these data, we performed a study to investigate the effect of the specific PDE5 inhibitor, tadalafil, on dystrophic skeletal muscle function. Chronic pharmacological treatment with tadalafil has been carried out in mdx mice. Behavioral and physiological tests, as well as histological and biochemical analyses, confirmed the efficacy of the therapy. We then performed a microarray-based genomic analysis to assess the pattern of gene expression in muscle samples obtained from the different cohorts of animals treated with tadalafil. This scrutiny allowed us to identify several classes of modulated genes. Our results show that PDE5 inhibition can ameliorate dystrophy by acting at different levels. Tadalafil can lead to (1) increased lipid metabolism; (2) a switch towards slow oxidative fibers driven by the up-regulation of PGC-1α; (3) an increased protein synthesis efficiency; (4) a better actin network organization at Z-disk.


Subject(s)
Lipid Metabolism/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Phosphodiesterase 5 Inhibitors/pharmacology , Tadalafil/pharmacology , Animals , Female , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/metabolism , Up-Regulation/drug effects
17.
Clin Sci (Lond) ; 127(6): 415-21, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24708050

ABSTRACT

Telomeres play an essential role in maintaining chromosomal integrity in the face of physiological stressors. Although the age-related shortening of TL (telomere length) in highly proliferative tissue is predominantly due to the replication process, the mechanism for telomere shortening in skeletal muscle, which is minimally proliferative, is unclear. By studying TL in both the upper and lower limbs of the young, old-mobile and old-immobile subjects and by virtue of the bipedal nature of human locomotion, which declines with age, it may be possible to elucidate the mechanism(s) responsible for cellular aging of skeletal muscle. With this approach, we revealed that TL (~15 kb) in arm skeletal muscle is unaffected by age. In contrast TL fell progressively in the legs across the young (~15 kb), the old mobile (~13 kb) and old immobile (~11 kb) subjects. Interestingly, there was a reciprocal increase in leg muscle free radicals across these groups that was correlated with TL (r=0.7), with no such relationship in the arm (r=0.09). Our results document that chronological age does not affect the cellular aging of skeletal muscle, but reveals that physical inactivity, probably mediated by free radicals, has a profound effect upon this process.


Subject(s)
Muscle, Skeletal/metabolism , Telomere/metabolism , Adult , Aged , Aged, 80 and over , Aging , Cellular Senescence/genetics , Female , Free Radicals/metabolism , Humans , Male , Telomerase/metabolism , Young Adult
18.
Exp Hematol Oncol ; 13(1): 81, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107850

ABSTRACT

BACKGROUND: Ataxia-telangiectasia (A-T) is a rare autosomal recessive multi-system and life-shortening disease, characterized by progressive cerebellar neurodegeneration, immunodeficiency, radiation sensitivity and cancer predisposition, with high incidence of leukemia and lymphoma. A-T is caused by mutations in the gene encoding for ATM protein that has a major role in maintaining the integrity of the genome. Because there are no cures for A-T, we aimed to tackle immunodeficiency and prevent cancer onset/progression by transplantation therapy. METHODS: Enriched hematopoietic stem/progenitor cells (HSPCs), collected from bone marrow of wild-type mice, were transplanted in the caudal vein of 1 month old conditioned Atm-/- mice. RESULTS: Genomic analyses showed that transplanted Atm positive cells were found in lymphoid organs. B cells isolated from spleen of transplanted mice were able to undergo class switching recombination. Thymocytes were capable to correctly differentiate and consequently an increase of helper T cells and TCRßhi expressing cells was observed. Protein analysis of isolated T and B cells from transplanted mice, revealed that they expressed Atm and responded to DNA damage by initiating an Atm-dependent phosphorylation cascade. Indeed, aberrant metaphases were reduced in transplanted Atm-deficient mice. Six months after transplantation, Atm-/- mice showed signs of aging, but they maintained the rescue of T cells maturation, showed DNA damage response, and prevented thymoma. CONCLUSION: We can conclude that wild-type enriched HSPCs transplantation into young Atm-deficient mice can ameliorate A-T hematopoietic phenotypes and prevent tumor of hematopoietic origin.

19.
Cell Death Dis ; 15(2): 169, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395995

ABSTRACT

Phosphodiesterase 2A (Pde2A) is a dual-specific PDE that breaks down both cAMP and cGMP cyclic nucleotides. We recently highlighted a direct relationship between Pde2A impairment, a consequent increase of cAMP, and the appearance of mouse congenital heart defects (CHDs). Here we aimed to characterize the pathways involved in the development of CHDs and in their prevention by pharmacological approaches targeting cAMP and cGMP signaling. Transcriptome analysis revealed a modulation of more than 500 genes affecting biological processes involved in the immune system, cardiomyocyte development and contractility, angiogenesis, transcription, and oxidative stress in hearts from Pde2A-/- embryos. Metoprolol and H89 pharmacological administration prevented heart dilatation and hypertabeculation in Pde2A-/- embryos. Metoprolol was also able to partially impede heart septum defect and oxidative stress at tissue and molecular levels. Amelioration of cardiac defects was also observed by using the antioxidant NAC, indicating oxidative stress as one of the molecular mechanisms underpinning the CHDs. In addition, Sildenafil treatment recovered cardiac defects suggesting the requirement of cAMP/cGMP nucleotides balance for the correct heart development.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2 , Heart Defects, Congenital , Mice , Animals , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Metoprolol , Signal Transduction , Cyclic GMP/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/prevention & control , Oxidative Stress
20.
Dev Cell ; 59(3): 308-325.e11, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38159569

ABSTRACT

The molecular mechanisms by which lymphatic vessels induce cell contact inhibition are not understood. Here, we identify the cGMP-dependent phosphodiesterase 2A (PDE2A) as a selective regulator of lymphatic but not of blood endothelial contact inhibition. Conditional deletion of Pde2a in mouse embryos reveals severe lymphatic dysplasia, whereas blood vessel architecture remains unaltered. In the absence of PDE2A, human lymphatic endothelial cells fail to induce mature junctions and cell cycle arrest, whereas cGMP levels, but not cAMP levels, are increased. Loss of PDE2A-mediated cGMP hydrolysis leads to the activation of p38 signaling and downregulation of NOTCH signaling. However, DLL4-induced NOTCH activation restores junctional maturation and contact inhibition in PDE2A-deficient human lymphatic endothelial cells. In postnatal mouse mesenteries, PDE2A is specifically enriched in collecting lymphatic valves, and loss of Pde2a results in the formation of abnormal valves. Our data demonstrate that PDE2A selectively finetunes a crosstalk of cGMP, p38, and NOTCH signaling during lymphatic vessel maturation.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2 , Lymphatic Vessels , Animals , Humans , Mice , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Down-Regulation , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL