Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Inorg Chem ; 63(11): 4925-4938, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38442008

ABSTRACT

Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 µM) and spheroids (IC50 3D: 16.3 ± 3.1 µM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 µM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 µM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 µM, indicating both anticancer and antimetastatic effects.


Subject(s)
Bone Neoplasms , Osteosarcoma , Child , Humans , Young Adult , Copper/pharmacology , Ligands , Osteosarcoma/drug therapy
2.
Inorg Chem ; 58(2): 1030-1039, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30605327

ABSTRACT

Complexes derived from meso-tetra(thienyl)porphyrins (TThP) and meso-tetra(pyridyl)porphyrin (TPyP) containing peripheral ruthenium complexes with general formulas {TPyP[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4, {TThP[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4, and {TThP-me-[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4 [5,5'-Mebipy = 5,5'-dimethyl-2,2'-bipyridine and dppb = 1,4-bis(diphenylphosphino)butane] were synthesized and characterized by spectroscopy techniques (1H- and 31P{1H}-NMR, IR, UV/vis, fluorescence, and electron paramagnetic resonance (EPR)), cyclic voltammetry, coulometry, molar conductivity, and elemental analysis. Voltammetry and UV/vis studies demonstrated differentiated electronic properties for ruthenium appended with TThP and TThP-me when compared to ruthenium appended with TPyP. The UV/vis analysis for the ruthenium complex derived from TThP and TThP-me, as well as the Soret and Q bands, characteristics of porphyrins, showed a band at 700 nm referring to the Ru → S electronic transition, and porphyrin TThP-me showed another band at 475 nm from the Ru-N transition. The attribution of these bands was confirmed by spectroelectrochemical analysis. Cyclic voltammetry analysis for the ruthenium complex derived from TPyP exhibited only an electrochemical process with E1/2 = 0.47 V assigned to the Ru(II)/Ru(III) redox pair (Fc/Fc+). On the other hand, two processes were observed for the ruthenium complexes derived from TThP and TThP-me, with E1/2 around 0.17 and 0.47 V, which were attributed to the formation of a mixed valence tetranuclear species containing Ru(II) and Ru(III) ions, showing that the peripheral groups are not oxidized at the same potential. Fluorescence spectroscopic experiments show the existence of a mixed state of emission in the supramolecular porphyrin moieties. The results suggest the formation of Ru(II)-Ru(III) mixed valence complexes when oxidation potential was applied around 0.17 V in the {TThP[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4 and {TThP-me-[RuCl(dppb)(5,5'-Mebipy)]4}(PF6)4 species.

3.
Phys Chem Chem Phys ; 21(8): 4394-4407, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30729962

ABSTRACT

We report the preparation, X-ray structure, chemical properties, and electron paramagnetic resonance (EPR) studies at Q and X-bands and temperature (mainly) T = 293 K of powder and oriented single crystal samples of the new compound [Cu(N',N'-dimethyl-N'-benzoylthiourea)(2,2'-bipyridine)Cl], called CuBMB. The EPR spectra of single crystal samples at the Q-band display abrupt merging and narrowing of the peaks corresponding to two rotated copper sites as a function of magnetic field (B0) orientation. This behaviour indicates a quantum transition from an array of quasi-isolated spins to a quantum-entangled spin array associated with exchange narrowing processes and produced by weak intermolecular exchange interactions Ji between neighbour copper spins. This transition occurs when the magnitudes of the anisotropic contributions to the Zeeman couplings, tuned with the direction of B0, approach these |Ji| and produce level crossings. The exchange couplings between neighbour spins are estimated from the angular variation of the single crystal EPR results at the Q-band. We analyse the quantum behaviour and phase transitions of the spin system and discuss the magnitudes of the exchange couplings in terms of the structure of the chemical paths connecting Cu neighbours. The single crystal data at the Q-band indicates an uncommon ground electronic state of CuII which is discussed and compared with the results of DFT calculations. The spectrum of polycrystalline (powder) samples at the Q-band is a sum of contributions of microcrystals in each phase, and the fraction F of the entangled phase depends on the microwave frequency. The X-band spectrum is compatible with the Q-band results, but does not display a transition, and the spin system is in the quantum-entangled phase for all field orientations. This behaviour is further studied with a simple geometric model giving basic predictions. The crystal structure of CuBMB is monoclinic, space group P21/n, with a = 11.9790(3) Å, b = 14.0236(5) Å, c = 12.1193(3) Å, ß = 104.952(2)° and Z = 4, and the copper ions are equatorially bonded to the benzoylthiourea and bipyridine ligands in a heavily distorted square pyramidal structure.

4.
Chemistry ; 22(29): 10081-9, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27310653

ABSTRACT

Coordination compounds of copper have been invoked as major actors in processes involving the reduction of molecular oxygen, mostly with the generation of radical species the assignment for which has, so far, not been fully addressed. In the present work, we have carried out studies in solution and on surfaces to gain insights into the nature of the radical oxygen species (ROS) generated by a copper(II) coordination compound containing a thioether clip-phen derivative, 1,3-bis(1,10-phenanthrolin-2-yloxy)-N-(4-(methylthio)benzylidene)propan-2-amine (2CP-Bz-SMe), enabling its adsorption/immobilization to gold surfaces. Whereas surface plasmon resonance (SPR) and electrochemistry of the adsorbed complex indicated the formation of a dimeric Cu(I) intermediate containing molecular oxygen as a bridging ligand, scanning electrochemical microscopy (SECM) and nuclease assays pointed to the generation of a ROS species. Electron paramagnetic resonance (EPR) data reinforced such conclusions, indicating that radical production was dependent on the amount of oxygen and H2 O2 , thus pointing to a mechanism involving a Fenton-like reaction that results in the production of OH(.) .


Subject(s)
Copper/chemistry , Deoxyribonucleases/chemistry , Hydroxyl Radical/chemistry , Organometallic Compounds/chemistry , Phenanthrolines/chemistry , Sulfides/chemistry , Biochemical Phenomena , Ligands , Oxidation-Reduction
5.
Molecules ; 20(10): 17747-59, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26404215

ABSTRACT

Plantago major L. produces several chemical substances with anti-inflammatory and analgesic activities and its use in the treatment of oral and throat inflammation in popular medicine is well described. In this study, the antioxidant potential of the Plantago major hydroethanolic extract was screened and its protective action was evaluated against t-BOOH-induced oxidative stress. The extract was obtained by fractionated percolation using 50% ethanolic solution and, after drying, suspended in dimethyl sulfoxide. The chromatographic profile of crude extract was obtained with the identification of some phytochemical markers and the total phenols and flavonoids were quantified. The scavenger activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals was determined and the antioxidant activity in biological systems was evaluated in isolated rat liver mitochondria and HepG2 cells. The extract exhibited a significant free radical scavenger activity at 0.1 mg/mL, and decreased the ROS (reactive oxygen species) generation in succinate-energized mitochondria. Such an effect was associated with the preservation of the intrinsic antioxidant defenses (reduced glutathione and NAD(P)H) against the oxidation by t-BOOH, and also to the protection of membranes from lipid oxidation. The cytoprotective effect of PmHE against t-BOOH induced cell death was also shown. These findings contribute to the understanding of the health benefits attributed to P. major.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plantago/chemistry , Cell Line , Humans , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
6.
Dalton Trans ; 52(32): 11254-11264, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37526523

ABSTRACT

Copper nitrite reductase mimetics were synthesized using three new tridentate ligands sharing the same N,N,N motif of coordination. The ligands were based on L-proline modifications, attaching a pyridine and a triazole to the pyrrolidine ring, and differ by a pendant group (R = phenyl, n-butyl and n-propan-1-ol). All complexes coordinate nitrite, as evidenced by cyclic voltammetry, UV-Vis, FTIR and electron paramagnetic resonance (EPR) spectroscopies. The coordination mode of nitrite was assigned by FTIR and EPR as κ2O chelate mode. Upon acidification, EPR experiments indicated a shift from chelate to monodentate κO mode, and 15N NMR experiments of a Zn2+ analogue, suggested that the related Cu(II) nitrous acid complex may be reasonably stable in solution, but in equilibrium with free HONO under non catalytic conditions. Reduction of nitrite to NO was performed both chemically and electrocatalytically, observing the highest catalytic activities for the complex with n-propan-1-ol as pendant group. These results support the hypothesis that a hydrogen bond moiety in the secondary coordination sphere may aid the protonation step.


Subject(s)
Copper , Nitrites , Nitrites/chemistry , Copper/chemistry , Ligands , Biomimetics , Nitrite Reductases/chemistry , Electron Spin Resonance Spectroscopy , Catalysis , Oxidation-Reduction , Crystallography, X-Ray
7.
J Inorg Biochem ; 238: 112052, 2023 01.
Article in English | MEDLINE | ID: mdl-36334365

ABSTRACT

The role of metal complexes on facing DNA has been a topic of major interest. However, metallonitrosyl compounds have been poorly investigated regarding their reactivities and interaction with DNA. A nitrosyl compound, cis-[Ru(bpy)2(SO3)(NO)](PF6)(A), showed a variety of promising biological activities catching our attention. Here, we carried out a series of studies involving the interaction and damage of DNA mediated by the metal complex A and its final product after NO release, cis-[Ru(bpy)2(SO3)(H2O](B). The fate of DNA with these metal complexes was investigated upon light or chemical stimuli using electrophoresis, electronic absorption spectroscopy, circular dichroism, size-exclusion resin, mass spectrometry, electron spin resonance (ESR) and viscometry. Since many biological disorders involve the production of oxidizing species, it is important to evaluate the reactivity of these compounds under such conditions as well. Indeed, the metal complex B exhibited important reactivity with H2O2 enabling DNA degradation, with detection of an unusual oxygenated intermediate. ESR spectroscopy detected mainly the DMPO-OOH adduct, which only emerges if H2O2 and O2 are present together. This result indicated HOO• as a key radical likely involved in DNA damage as supported by agarose gel electrophoresis. Notably, the nitrosyl ruthenium complex did not show evidence of direct DNA damage. However, its aqua product should be carefully considered as potentially harmful to DNA deserving further in vivo studies to better address any genotoxicity.


Subject(s)
Coordination Complexes , Ruthenium , Ruthenium/chemistry , Coordination Complexes/chemistry , Hydrogen Peroxide , Ruthenium Compounds/chemistry , Nitric Oxide/chemistry , DNA
8.
Inorg Chem ; 51(4): 2065-78, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22289382

ABSTRACT

A mixed-valence complex, [Fe(III)Fe(II)L1(µ-OAc)(2)]BF(4)·H(2)O, where the ligand H(2)L1 = 2-{[[3-[((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The Fe(III)Fe(II) and Fe(III)(2) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1)·S(2), where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The Fe(III)Fe(II) complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe(III)(2) complex showed an EPR spectrum due to population of the S(tot) = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the Fe(III)Fe(II) complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 × 10(-3) s(-1); K(m) = 4.63 × 10(-3) mol L(-1)) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe(III). It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(µ-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.


Subject(s)
Acid Phosphatase/chemistry , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Glycoproteins/chemistry , Acid Phosphatase/metabolism , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Catalytic Domain , Cattle , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Glycoproteins/metabolism , Hydrolysis , Models, Molecular , Pyridines/chemistry , Pyridines/metabolism , Serum Albumin, Bovine/metabolism
9.
Chemosphere ; 286(Pt 2): 131755, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34365173

ABSTRACT

Humic substances (HS) possess redox active groups covering a wide range of potentials and are used by facultative anaerobic microorganisms as electron acceptors. To serve as suitable electron shuttles for anaerobic respiration, HS should be able to re-oxidize relatively quickly to prevent polarization of the surrounding medium. Mediated electrochemical oxidation and decolorization assays, based on the reduction of the radical ion of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•-) allow to determine the electron donating capacity (EDC) of HS, but uncertainties remain about the reaction time that should be allowed to obtain environmentally meaningful EDC values. In this work, we performed a kinetic analysis of the time trend of the reduction of ABTS•- by HS by Vis and Electron Paramagnetic Resonance (EPR) spectroscopies and by cyclic voltammetry. We found evidences of two concomitant separate mechanisms of electron exchange: a fast and a slow transfer processes which may have different environmental roles. These results can set a base to identify the appropriate conditions for the spectrophotometric determination of the fast and slow components of the EDC of HS.


Subject(s)
Electrons , Humic Substances , Electron Transport , Humic Substances/analysis , Kinetics , Oxidation-Reduction
10.
J Bioenerg Biomembr ; 43(6): 663-71, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21986957

ABSTRACT

Aerobic organisms are afforded with an antioxidant enzymatic apparatus that more recently has been recognized to include cytochrome c, as it is able to prevent hydrogen peroxide generation by returning electrons from the superoxide ion back to the respiratory chain. The present study investigated the glutathione peroxidase (GPx), superoxide dismutase (SOD) and cytochrome c-like antioxidant activities of para Mn(III)TMPyP in isolated rat liver mitochondria (RLM) and mitoplasts. In RLM, Mn(III)TMPyP decreased the lipid-peroxide content associated with glutathione (GSH) depletion consistent with the use of GSH as a reducing agent for high valence states of Mn(III)TMPyP. SOD and cytochrome c antioxidant activities were also investigated. Mn(II)TMPyP was able to reduce ferric cytochrome c, indicating the potential to remove a superoxide ion by returning electrons back to the respiratory chain. In antimicyn A-poisoned mitoplasts, Mn(III)TMPyP efficiently decreased the EPR signal of DMPO-OH adduct concomitant with GSH depletion. The present results are consistent with SOD and GPx activities for Mn(III)TMPyP and do not exclude cytochrome c-like activity. However, considering that para Mn(III)TMPyP more efficiently reduces, rather than oxidizes, superoxide ion; electron transfer from the Mn(II)TMPyP to the respiratory chain might not significantly contribute to the superoxide ion removal, since most of Mn(II)TMPyP is expected to be produced at the expense of NADPH/GSH oxidation. The present results suggest GPx-like activity to be the principal antioxidant mechanism of Mn(III)TMPyP, whose efficiency is dependent on the NADPH/GSH content in cells.


Subject(s)
Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Manganese/metabolism , Metalloporphyrins/metabolism , Mitochondria, Liver/metabolism , Superoxides/metabolism , Animals , Cytochromes c/metabolism , Electron Transport/physiology , Glutathione/metabolism , NAD/metabolism , Oxidation-Reduction , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
11.
Dalton Trans ; 50(34): 11931-11940, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34374389

ABSTRACT

Improving the binding of metal complexes to DNA to boost cancer cell cytotoxicity requires fine tuning of their structural and chemical properties. Copper has been used as a metal center in compounds containing intercalating ligands due to its ability to catalytically generate reactive oxygen species (ROS), such as hydroxyl radicals (OH˙). We envision the synergy of DNA binding and ROS generation in proximity to target DNA as a powerful chemotherapy treatment. Here, we explore the use of [Cu(2CP-Bz-SMe)]2+ (2CP-Bz-SMe = 1,3-bis(1,10-phenanthrolin-2-yloxy)-N-(4-(methylthio)benzylidene)propan-2-amine) for this purpose by characterizing its cytotoxicity, DNA binding, and ability to affect DNA replication through the polymerase chain reaction - PCR and nuclease assays. We determined the binding (Kb) and Stern-Volmer constants (KSV) for complex-DNA association of 5.8 ± 0.14 × 104 and 1.64 (±0.08), respectively, through absorption titration and competitive fluorescence experiments. These values were superior to those of other Cu-complex intercalators. We hypothesize that the distorted trigonal bipyramidal geometry of [Cu(2CP-Bz-SMe)]2+ allows the phenanthroline fragments to be better accommodated into the DNA double helix. Moreover, the aromaticity of these fragments increases the local hydrophobicity thus increasing the affinity for the hydrophobic domains of DNA. Nuclease assays in the presence of common reducing agents ascorbic acid, nicotinamide adenine dinucleotide, and glutathione showed the effective degradation of DNA due to the in situ generation of OH˙. The [Cu(2CP-Bz-SMe)]2+ complex showed cytotoxicity against the following human cancer cells lines A549, MCF-7, MDA-MB-231 and MG-63 with half maximal inhibitory concentration (IC50) values of 4.62 ± 0.48, 5.20 ± 0.76, 5.70 ± 0.42 and 2.88 ± 0.66 µM, respectively. These low values of IC50, which are promising if compared to that of cisplatin, are ascribed to the synergistic effect of ROS generation with the intercalation ability into the DNA minor grooves and blocking DNA replication. This study introduces new principles for synergizing the chemical and structural properties of intercalation compounds for improved drug-DNA interactions targeting cancer.


Subject(s)
Copper , Coordination Complexes , Phenanthrolines
12.
J Colloid Interface Sci ; 587: 479-488, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33387842

ABSTRACT

The photo-Fenton activity of graphitic carbon nitride (g-C3N4) has been widely studied, nevertheless, its Fenton-like catalytic behavior in the dark has not yet been demonstrated. In the present work, it is shown that oxygenated g-C3N4 obtained at different temperatures (500-600 °C) can degrade indigo carmine with hydrogen peroxide in the dark by a reaction similar to a conventional Fenton's reaction. Based on an extensive characterization of g-C3N4, we conclude that Fenton-like activity is directly related to the oxygenated functional groups on g-C3N4 structure, mainly by -OH functional groups. Oxygenated functional groups (e.g., hydroquinone-like groups) can reduce the H2O2 and generate oxidizing hydroxyl radicals, just like in the Fenton reaction performed by metals. In addition to new information on g-C3N4 surface reactivity revealed by this study, the metal-free oxygenated g-C3N4 catalyst may be an alternative to traditional metal catalysts used in Fenton-like reactions for advanced oxidation.

13.
Dalton Trans ; 49(16): 5228-5240, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32239049

ABSTRACT

To investigate the magnetic properties and the spin entanglement of dinuclear arrays, we prepared compounds [{Cu(pAB)(phen)H2O}2·NO3·pABH·2H2O], 1, and [Cu2(pAB)2(phen)2pz]n, 2 (pABH = p-aminobenzoic acid, phen = 1,10-phenanthroline and pz = pyrazine). The structure of 1 is known and we report here that of 2. They contain similar dinuclear units of CuII ions with 1/2-spins S1 and S2 bridged by pairs of pAB molecules, with similar intradinuclear exchange and fine interactions , but different 3D crystal arrays with weak interdinuclear exchange J', stronger in 2 than in 1. To investigate the magnetic properties and the spin entanglement produced by J', we collected the powder spectra of 1 and 2 at 9.4 GHz and T between 5 and 298 K, and at 34.4 GHz and T = 298 K and single-crystal spectra at room T and 34.4 GHz as a function of magnetic field (B0) orientation in three crystal planes, calculating intradinuclear magnetic parameters J(1)0 = (-75 ± 1) cm-1, J(2)0 = (-78 ± 2) cm-1, |D(1)| = (0.142 ± 0.006) cm-1, |D(2)| = (0.141 ± 0.006) cm-1 and E(1) ∼ E(2) ∼ 0. Single crystal data indicate a quantum entangled phase in 2 around the crossing between two fine structure EPR absorption peaks within the spin triplet. This phase also shows up in powder samples of 2 as a U-peak collecting the signals of the entangled microcrystals, a feature that allows estimating |J'|. Transitions between the two quantum phases are observed in single crystals of 2 changing the orientation of B0. We estimate interdinuclear exchange couplings |J'(1)| < 0.003 cm-1 and |J'(2)| = (0.013 ± 0.005) cm-1, in 1 and 2, respectively. Our analysis indicates that the standard approximation of a spin Hamiltonian with S = 1 for the dinuclear spectra is valid only when the interdinuclear coupling is large enough, as for compound 2 (|J'(2)/J(2)0| ∼ 1.7 × 10-4). When J' is negligible as in 1, the real spin Hamiltonian with two spins 1/2 has to be used. Broken-symmetry DFT predicts correctly the nature and magnitude of the antiferromagnetic exchange coupling in 1 and 2 and ferromagnetic interdinuclear coupling for compound 2.

14.
Dalton Trans ; 48(37): 14128-14137, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31498349

ABSTRACT

This work presents the results obtained for a thioether derivative of bipyridine, (E,Z)-1-(4'-methyl-[2,2'-bipyridine]-4-yl)-N-(4(methylthio)phenyl)methanimine (4-mbpy-Bz-SMe), and its copper complex [CuII(4-mbpy-Bz-SMe)2]2+. Electronic spectra acquired at 183 K of the cuprous complex [CuI(4-mbpy-Bz-SMe)2]+ generated in situ indicated the formation of the peroxodicopper compound {[CuII(4-mbpy-Bz-SMe)2]2(µ-O22-)}2+. A gold electrode modified with [CuII(4-mbpy-Bz-SMe)2]2+ (Au/[Cu]) was fully characterized by SERS spectroscopy, electrochemistry and impedance spectroscopy thus showing adsorption occurs through the sulfur atom of the 4-mbpy-Bz-SMe moieties. DNA cleavage assays showed the copper complex, in solution and adsorbed on gold, degrades DNA if reducing conditions are maintained, i.e. ascorbic acid (H2AA) in solution or applied potentials more negative than 0.12 V vs. Ag/AgCl (CuI form). The electron paramagnetic resonance (EPR) spectra obtained for the electrolyzed solution (Eapl = -0.2 V, no H2O2) and for the solution containing [CuII(4-mbpy-Bz-SMe)2]2+ and H2O2 showed hydroxyl radical, HO˙, generation had occurred. The cyclic voltammograms obtained with H2AA in solution at Au/[CuII(4-mbpy-Bz-SMe)2]2+ as the working electrode showed a one-electron reaction leading to the ascorbyl radical (HA˙), which was detected by EPR. The current assigned to the electrode oxidation of HA˙ to AA decreased with the addition of catalase, a scavenger of H2O2, meaning peroxide is involved in the mechanism.

15.
Biophys J ; 94(10): 4066-77, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18227133

ABSTRACT

The alternative low-spin states of Fe(3+) and Fe(2+) cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met(80) by another strong field ligand at the sixth heme iron coordination position, Fe(3+) ALSScytc exhibited 1-nm Soret band blue shift and epsilon enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe(3+) and Fe(2+) ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe(3+) ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential approximately 200 mV lower than the wild-type protein (+220 mV) and was more susceptible to the attack of free radicals.


Subject(s)
Cytochromes c/metabolism , Cytochromes c/ultrastructure , Horses/metabolism , Iron/chemistry , Models, Chemical , Myocardium/enzymology , Spectrum Analysis/methods , Animals , Computer Simulation , Models, Molecular , Protein Conformation , Spin Labels
16.
J Inorg Biochem ; 102(2): 285-92, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17976730

ABSTRACT

The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis.


Subject(s)
Anti-Bacterial Agents , Bacteria/drug effects , Nickel/chemistry , Organometallic Compounds , Sulfapyridine , Sulfisoxazole , Sulfonamides , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Crystallography, X-Ray , Escherichia coli/drug effects , Mycobacterium tuberculosis/drug effects , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Staphylococcus aureus/drug effects , Sulfapyridine/chemical synthesis , Sulfapyridine/chemistry , Sulfapyridine/pharmacology , Sulfisoxazole/chemical synthesis , Sulfisoxazole/chemistry , Sulfisoxazole/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology
17.
Bioorg Med Chem ; 16(8): 4313-22, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18329884

ABSTRACT

A new copper(II) complex of santonic acid [Cu(2)(sant)(4)(H(2)O)(2)].2(1/2)H(2)O has been prepared and characterized by electronic, vibrational, EPR spectral studies, and stability determinations in solution. The presence of two antiferrromagnetically coupled copper centers in the solid state was detected by EPR. The dinuclear Cu(II) complex crystallizes in the tetragonal P4(3)2(1)2 space group, with a=b=14.498(3), c=64.07(1)A. Biological studies indicate that the complex displays interesting potential antitumoral actions.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Bridged-Ring Compounds/chemical synthesis , Bridged-Ring Compounds/pharmacology , Copper/chemistry , Animals , Antineoplastic Agents/chemistry , Bridged-Ring Compounds/chemistry , Cell Line , Cell Proliferation/drug effects , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Humans , Mice , Models, Molecular , Molecular Structure , Rats , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Structure-Activity Relationship , Vibration
18.
Rev Sci Instrum ; 79(1): 016104, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18248076

ABSTRACT

This paper revisits the design of L and S band bridged loop-gap resonators (BLGRs) for electron paramagnetic resonance applications. A novel configuration is described and extensively characterized for resonance frequency and quality factor as a function of the geometrical parameters of the device. The obtained experimental results indicate higher values of the quality factor (Q) than previously reported in the literature, and the experimental analysis data should provide useful guidelines for BLGR design.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Transducers , Electron Spin Resonance Spectroscopy/methods , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
19.
RSC Adv ; 8(23): 12879-12886, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-35541239

ABSTRACT

The combination of visible-light and tris(trimethylsilyl)silane promoting intramolecular reductive cyclization protocol for the synthesis of functionalized indolines and 2,3-dihydrobenzofurans has been developed. The transformations occur in the absence of transition metal and additional photocatalyst. In addition, quantum yield (Φ) was determined and electron paramagnetic resonance spectroscopy was performed to better understand the reaction pathway.

20.
J Inorg Biochem ; 186: 294-300, 2018 09.
Article in English | MEDLINE | ID: mdl-29996087

ABSTRACT

Magnetic nanoparticles have been extensively explored for the development of platforms for drug delivery and imaging probes. In this work, we have used a modular capping strategy to produce magnetic gold-coated Fe3O4 (Fe3O4@Au) nanoparticles, which have been decorated with a copper (II) complex containing a thioether derivative of clip-phen (Fe3O4@Au@Cu), where the complex [Cu(2CP-Bz-SMe)]2+ has affinity to bind DNA and proven nuclease activity (2CP-Bz-SMe=1,3-bis((1,10-phenanthrolin-2-yl)oxy)-N-(4-(methylthio)benzylidene)propan-2-imine). The functionalization of Fe3O4@Au with the copper complex occurs through the sulfur atom of the thioether moiety, as indicated by Raman scattering on surface. The magnetic measurements showed the nanomaterial Fe3O4@Au@Cu is still magnetic although the gold shell and the functionalization with the copper complex have diminished the magnetization due to the dilution of the magnetic core. The nuclease assays performed with Fe3O4@Au@Cu indicate that the nuclease activity of the nanomaterial toward the plasmid DNA involves an oxidative pathway in which H2O2 species is involved as intermediate in a Fenton-like reaction. Based on the electron paramagnetic resonance spectra (aN = 15.07 G, aH = 14.99 G), such nuclease activity is assigned, essentially, to the HO species indicating that the radical production property of [Cu(2CP-Bz-SMe)]2+ is successfully transferred to the core-shell gold-coated Fe3O4 magnetic nanoparticles. To the best of our knowledge, this is the first study reporting nuclease activity due to the reactive oxygen species generated by a copper complex immobilized on a gold-coated magnetic nanoparticle.


Subject(s)
Copper/chemistry , Deoxyribonucleases/chemistry , Gold/chemistry , Hydrogen Peroxide/chemistry , Magnetite Nanoparticles/chemistry , Plasmids/chemistry , Electron Spin Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL