Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Elife ; 132024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597390

ABSTRACT

Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.


Subject(s)
Alternative Splicing , Exons , Neurons , Polypyrimidine Tract-Binding Protein , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Exons/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Phosphorylation , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL