Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell ; 165(5): 1238-1254, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27118425

ABSTRACT

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Subject(s)
Brain/cytology , Cell Culture Techniques , Models, Biological , Organoids , Zika Virus/physiology , Bioreactors , Cell Culture Techniques/economics , Embryo, Mammalian , Embryonic Development , Humans , Induced Pluripotent Stem Cells , Neurogenesis , Neurons/cytology , Organoids/virology , Zika Virus Infection/physiopathology , Zika Virus Infection/virology
2.
BMC Bioinformatics ; 25(1): 31, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233808

ABSTRACT

Analyzing the interactions of circular RNAs (circRNAs) is a crucial step in understanding their functional impacts. While there are numerous visualization tools available for investigating circRNA interaction networks, these tools are typically limited to known circRNAs from specific databases. Moreover, these existing tools usually require complex installation procedures which can be time-consuming and challenging for users. There is a lack of a user-friendly web application that facilitates interactive exploration and visualization of circRNA interaction networks. CircNetVis is an interactive online web application to enhance the analysis of human/mouse circRNA interactions. The tool allows three different input formats of circRNAs including circRNA IDs from CircBase, circRNA coordinates (chromosome, start position, end position), and circRNA sequences in the FASTA format. It integrates multiple interaction networks for visualization and investigation of the interplay between circRNA, microRNAs, mRNAs and RNA binding proteins. CircNetVis also enables users to interactively explore the interactions of unknown circRNAs which are not reported from previous databases. The tool can generate interactive plots and allows users to save results as output files for offline usage. CircNetVis is implemented as a web application using R-shiny and freely available for academic use at https://www.meb.ki.se/shiny/truvu/CircNetVis/ .


Subject(s)
MicroRNAs , RNA, Circular , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Software , Databases, Factual , Gene Regulatory Networks
3.
BMC Genomics ; 23(1): 106, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135477

ABSTRACT

BACKGROUND: Circular RNA (circRNA), a class of RNA molecule with a loop structure, has recently attracted researchers due to its diverse biological functions and potential biomarkers of human diseases. Most of the current circRNA detection methods from RNA-sequencing (RNA-Seq) data utilize the mapping information of paired-end (PE) reads to eliminate false positives. However, much of the practical RNA-Seq data such as cross-linking immunoprecipitation sequencing (CLIP-Seq) data usually contain single-end (SE) reads. It is not clear how well these tools perform on SE RNA-Seq data. RESULTS: In this study, we present a systematic evaluation of six advanced RNA-based methods and two CLIP-Seq based methods for detecting circRNAs from SE RNA-Seq data. The performances of the methods are rigorously assessed based on precision, sensitivity, F1 score, and true discovery rate. We investigate the impacts of read length, false positive ratio, sequencing depth and PE mapping information on the performances of the methods using simulated SE RNA-Seq simulated datasets. The real datasets used in this study consist of four experimental RNA-Seq datasets with ≥100bp read length and 124 CLIP-Seq samples from 45 studies that contain mostly short-read (≤50bp) RNA-Seq data. The simulation study shows that the sensitivities of most of the methods can be improved by increasing either read length or sequencing depth, and that the levels of false positive rates significantly affect the precision of all methods. Furthermore, the PE mapping information can improve the method's precision but can not always guarantee the increase of F1 score. Overall, no method is dominant for all SE RNA-Seq data. The RNA-based methods perform better for the long-read datasets but are worse for the short-read datasets. In contrast, the CLIP-Seq based methods outperform the RNA-Seq based methods for all the short-read samples. Combining the results of these methods can significantly improve precision in the CLIP-Seq data. CONCLUSIONS: The results provide a systematic evaluation of circRNA detection methods on SE RNA-Seq data that would facilitate researchers' strategies in circRNA analysis.


Subject(s)
RNA, Circular , RNA , High-Throughput Nucleotide Sequencing , Humans , Immunoprecipitation , RNA/genetics , RNA-Seq , Sequence Analysis, RNA
4.
BMC Bioinformatics ; 22(1): 495, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34645386

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is an emerging class of RNA molecules attracting researchers due to its potential for serving as markers for diagnosis, prognosis, or therapeutic targets of cancer, cardiovascular, and autoimmune diseases. Current methods for detection of circRNA from RNA sequencing (RNA-seq) focus mostly on improving mapping quality of reads supporting the back-splicing junction (BSJ) of a circRNA to eliminate false positives (FPs). We show that mapping information alone often cannot predict if a BSJ-supporting read is derived from a true circRNA or not, thus increasing the rate of FP circRNAs. RESULTS: We have developed Circall, a novel circRNA detection method from RNA-seq. Circall controls the FPs using a robust multidimensional local false discovery rate method based on the length and expression of circRNAs. It is computationally highly efficient by using a quasi-mapping algorithm for fast and accurate RNA read alignments. We applied Circall on two simulated datasets and three experimental datasets of human cell-lines. The results show that Circall achieves high sensitivity and precision in the simulated data. In the experimental datasets it performs well against current leading methods. Circall is also substantially faster than the other methods, particularly for large datasets. CONCLUSIONS: With those better performances in the detection of circRNAs and in computational time, Circall facilitates the analyses of circRNAs in large numbers of samples. Circall is implemented in C++ and R, and available for use at https://www.meb.ki.se/sites/biostatwiki/circall and https://github.com/datngu/Circall.


Subject(s)
RNA, Circular , RNA , Humans , RNA/genetics , RNA Splicing , RNA-Seq , Sequence Analysis, RNA
5.
Development ; 144(6): 952-957, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28292840

ABSTRACT

Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.


Subject(s)
Brain/pathology , Microcephaly/virology , Organoids/pathology , Zika Virus/physiology , Animals , Humans , Microcephaly/pathology , Zika Virus Infection/virology
6.
Bioinformatics ; 35(22): 4679-4687, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31028395

ABSTRACT

MOTIVATION: Both single-cell RNA sequencing (scRNA-seq) and DNA sequencing (scDNA-seq) have been applied for cell-level genomic profiling. For mutation profiling, the latter seems more natural. However, the task is highly challenging due to the limited input materials from only two copies of DNA molecules, while whole-genome amplification generates biases and other technical noises. ScRNA-seq starts with a higher input amount, so generally has better data quality. There exists various methods for mutation detection from DNA sequencing, it is not clear whether these methods work for scRNA-seq data. RESULTS: Mutation detection methods developed for either bulk-cell sequencing data or scDNA-seq data do not work well for the scRNA-seq data, as they produce substantial numbers of false positives. We develop a novel and robust statistical method-called SCmut-to identify specific cells that harbor mutations discovered in bulk-cell data. Statistically SCmut controls the false positives using the 2D local false discovery rate method. We apply SCmut to several scRNA-seq datasets. In scRNA-seq breast cancer datasets SCmut identifies a number of highly confident cell-level mutations that are recurrent in many cells and consistent in different samples. In a scRNA-seq glioblastoma dataset, we discover a recurrent cell-level mutation in the PDGFRA gene that is highly correlated with a well-known in-frame deletion in the gene. To conclude, this study contributes a novel method to discover cell-level mutation information from scRNA-seq that can facilitate investigation of cell-to-cell heterogeneity. AVAILABILITY AND IMPLEMENTATION: The source codes and bioinformatics pipeline of SCmut are available at https://github.com/nghiavtr/SCmut. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Mutation , Gene Expression Profiling , Humans , Sequence Analysis, RNA , Single-Cell Analysis , Software
7.
Nature ; 515(7527): 414-8, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25132547

ABSTRACT

Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and 'a disease of synapses' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Mental Disorders/pathology , Synapses/pathology , Animals , Cell Differentiation , Fibroblasts , Glutamine/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mental Disorders/genetics , Mental Disorders/metabolism , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Pedigree , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology , Prosencephalon/metabolism , Prosencephalon/pathology , Protein Binding , Synapses/metabolism , Transcriptome
8.
Nucleic Acids Res ; 44(18): 8610-8620, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27580721

ABSTRACT

Zika virus (ZIKV) infection causes microcephaly and has been linked to other brain abnormalities. How ZIKV impairs brain development and function is unclear. Here we systematically profiled transcriptomes of human neural progenitor cells exposed to Asian ZIKVC, African ZIKVM, and dengue virus (DENV). In contrast to the robust global transcriptome changes induced by DENV, ZIKV has a more selective and larger impact on expression of genes involved in DNA replication and repair. While overall expression profiles are similar, ZIKVC, but not ZIKVM, induces upregulation of viral response genes and TP53. P53 inhibitors can block the apoptosis induced by both ZIKVC and ZIKVM in hNPCs, with higher potency against ZIKVC-induced apoptosis. Our analyses reveal virus- and strain-specific molecular signatures associated with ZIKV infection. These datasets will help to investigate ZIKV-host interactions and identify neurovirulence determinants of ZIKV.


Subject(s)
Cerebral Cortex/cytology , Gene Expression Profiling , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Zika Virus Infection/genetics , Zika Virus/physiology , Cell Death/genetics , Cell Line , DNA Repair/genetics , DNA Replication/genetics , Dengue Virus/physiology , Humans , Signal Transduction/genetics , Species Specificity , Tumor Suppressor Protein p53/metabolism , Up-Regulation/genetics , Zika Virus Infection/virology
9.
Sensors (Basel) ; 18(4)2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29596397

ABSTRACT

In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS), that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers' vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features) as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine) contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97.33% that is considerably higher than that of the state-of the art.

10.
Nature ; 474(7351): 399-402, 2011 May 22.
Article in English | MEDLINE | ID: mdl-21602826

ABSTRACT

The differentiation of patient-derived induced pluripotent stem cells (iPSCs) to committed fates such as neurons, muscle and liver is a powerful approach for understanding key parameters of human development and disease. Whether undifferentiated iPSCs themselves can be used to probe disease mechanisms is uncertain. Dyskeratosis congenita is characterized by defective maintenance of blood, pulmonary tissue and epidermal tissues and is caused by mutations in genes controlling telomere homeostasis. Short telomeres, a hallmark of dyskeratosis congenita, impair tissue stem cell function in mouse models, indicating that a tissue stem cell defect may underlie the pathophysiology of dyskeratosis congenita. Here we show that even in the undifferentiated state, iPSCs from dyskeratosis congenita patients harbour the precise biochemical defects characteristic of each form of the disease and that the magnitude of the telomere maintenance defect in iPSCs correlates with clinical severity. In iPSCs from patients with heterozygous mutations in TERT, the telomerase reverse transcriptase, a 50% reduction in telomerase levels blunts the natural telomere elongation that accompanies reprogramming. In contrast, mutation of dyskerin (DKC1) in X-linked dyskeratosis congenita severely impairs telomerase activity by blocking telomerase assembly and disrupts telomere elongation during reprogramming. In iPSCs from a form of dyskeratosis congenita caused by mutations in TCAB1 (also known as WRAP53), telomerase catalytic activity is unperturbed, yet the ability of telomerase to lengthen telomeres is abrogated, because telomerase mislocalizes from Cajal bodies to nucleoli within the iPSCs. Extended culture of DKC1-mutant iPSCs leads to progressive telomere shortening and eventual loss of self-renewal, indicating that a similar process occurs in tissue stem cells in dyskeratosis congenita patients. These findings in iPSCs from dyskeratosis congenita patients reveal that undifferentiated iPSCs accurately recapitulate features of a human stem cell disease and may serve as a cell-culture-based system for the development of targeted therapeutics.


Subject(s)
Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Telomere/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division , Cellular Reprogramming , Fibroblasts , Gene Expression Regulation , Humans , Molecular Chaperones , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere/enzymology , Telomere/genetics , Telomere/metabolism
11.
Nature ; 462(7270): 222-5, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19865085

ABSTRACT

The leading cause of infertility in men and women is quantitative and qualitative defects in human germ-cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ-cell formation and differentiation owing to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages. Here we used a germ-cell reporter to quantify and isolate primordial germ cells derived from both male and female human embryonic stem cells. By silencing and overexpressing genes that encode germ-cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ-cell formation and developmental progression. We observed that human DAZL (deleted in azoospermia-like) functions in primordial germ-cell formation, whereas closely related genes DAZ and BOULE (also called BOLL) promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications.


Subject(s)
Cell Differentiation , Germ Cells/cytology , Germ Cells/metabolism , Haploidy , RNA-Binding Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Count , Cell Line , Cellular Reprogramming , Deleted in Azoospermia 1 Protein , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Gene Expression , Gene Silencing , Genes, Reporter , Humans , Male , Meiosis , Organ Specificity , RNA-Binding Proteins/genetics
12.
Methods ; 64(2): 160-8, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23748112

ABSTRACT

Multicolor fluorescence in situ hybridization, or FISH, is a widely used method to assess fixed tissues or isolated cells for numerical and structural chromosome aberrations. Unlike other screening procedures which provide average chromosome numbers for heterogeneous samples, FISH is a sensitive cell-by-cell method to analyze the distribution of abnormal cells in complex tissues. Here, we applied FISH to characterize chromosomal composition of a rare, but very important class of human cells that stabilize the fetal-maternal interface connecting the placenta to the uterine wall during early pregnancy, called invasive cytotrophoblasts (iCTBs). Combining differently-labeled, chromosome-specific DNA probes, we were able to unambiguously determine the number of up to six different autosomes and gonosomes in individual cell nuclei from iCTBs selected on the basis of their invasive behavior. In this manuscript, we describe a method for generation of iCTBs from placental villi, and provide the complete workflow of our FISH experiments including a detailed description of reagents and a trouble-shooting guide. We also include an in-depth discussion of the various types and sources of DNA probes which have evolved considerably in the last two decades. Thus, this communication represents both a complete guide as well as a valuable resource, intended to allow an average laboratory to reproduce the experiments and minimize the amount of specialized, and often costly, equipment.


Subject(s)
In Situ Hybridization, Fluorescence/methods , Trophoblasts/metabolism , Cell Separation , DNA Probes , Female , Humans , Placenta/cytology , Pregnancy
13.
Hum Mol Genet ; 20(4): 752-62, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21131292

ABSTRACT

Historically, our understanding of molecular genetic aspects of human germ cell development has been limited, at least in part due to inaccessibility of early stages of human development to experimentation. However, the derivation of pluripotent stem cells may provide the necessary human genetic system to study germ cell development. In this study, we compared the potential of human induced pluripotent stem cells (iPSCs), derived from adult and fetal somatic cells to form primordial and meiotic germ cells, relative to human embryonic stem cells. We found that ∼5% of human iPSCs differentiated to primordial germ cells (PGCs) following induction with bone morphogenetic proteins. Furthermore, we observed that PGCs expressed green fluorescent protein from a germ cell-specific reporter and were enriched for the expression of endogenous germ cell-specific proteins and mRNAs. In response to the overexpression of intrinsic regulators, we also observed that iPSCs formed meiotic cells with extensive synaptonemal complexes and post-meiotic haploid cells with a similar pattern of ACROSIN staining as observed in human spermatids. These results indicate that human iPSCs derived from reprogramming of adult somatic cells can form germline cells. This system may provide a useful model for molecular genetic studies of human germline formation and pathology and a novel platform for clinical studies and potential therapeutical applications.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Germ Cells/cytology , Induced Pluripotent Stem Cells/cytology , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology , Cell Line , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Germ Cells/metabolism , Haploidy , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Synaptonemal Complex/metabolism
14.
PLoS One ; 18(7): e0284317, 2023.
Article in English | MEDLINE | ID: mdl-37478076

ABSTRACT

A total of 24 chromosome-specific fluorescence in situ hybridization probes for interphase nucleus analysis were developed to determine the chromosomal content of individual human invasive cytotrophoblasts derived from in vitro cultured assays. At least 75% of invasive cytotrophoblasts were hyperdiploid and the total number of chromosomes ranged from 47 to 61. The results also demonstrated that these hyperdiploid invasive cytotrophoblasts showed significant heterogeneity. The most copy number gains were observed for chromosomes 13, 14, 15, 19, 21, and 22 with average copy number greater than 2.3. A parallel study using primary invasive cytotrophoblasts also showed a similar trend of copy number changes. Conclusively, 24-chromosome analysis of human non-proliferating cytotrophoblasts (interphase nuclei) was achieved. Hyperdiploidy and chromosomal heterogeneity without endoduplication in invasive cytotrophoblasts may suggest a selective advantage for invasion and short lifespan during normal placental development.


Subject(s)
Placenta , Trophoblasts , Humans , Female , Pregnancy , In Situ Hybridization, Fluorescence/methods , Aneuploidy , Cell Nucleus , Interphase/genetics
15.
PLoS One ; 18(10): e0292926, 2023.
Article in English | MEDLINE | ID: mdl-37862312

ABSTRACT

The ability to model human neurological tissues in vitro has been a major hurdle to effective drug development for neurological disorders. iPSC-derived brain organoids have emerged as a compelling solution to this problem as they have the potential to relevantly model the protein expression pattern and physiology of specific brain regions. Although many protocols now exist for the production of brain organoids, few attempts have been made to do an in-depth kinetic evaluation of expression of mature regiospecific markers of brain organoids. To address this, we differentiated midbrain-specific brain organoids from iPSC-lines derived from three apparently healthy individuals using a matrix-free, bioreactor method. We monitored the expression of midbrain-specific neuronal markers from 7 to 90-days using immunofluorescence and immunohistology. The organoids were further characterized using electron microscopy and RNA-seq. In addition to serving as a potential benchmark for the future evaluation of other differentiation protocols, the markers observed in this study can be useful as control parameters to identify and evaluate the disease phenotypes in midbrain organoid derived from patient iPSC-lines with genetic neurological disorders.


Subject(s)
Induced Pluripotent Stem Cells , Nervous System Diseases , Humans , Induced Pluripotent Stem Cells/metabolism , Mesencephalon , Brain , Organoids/metabolism , Nervous System Diseases/metabolism , Cell Differentiation
16.
Front Cell Dev Biol ; 11: 1039182, 2023.
Article in English | MEDLINE | ID: mdl-36875753

ABSTRACT

NGLY1 deficiency is an ultra-rare, autosomal recessive genetic disease caused by mutations in the NGLY1 gene encoding N-glycanase one that removes N-linked glycan. Patients with pathogenic mutations in NGLY1 have complex clinical symptoms including global developmental delay, motor disorder and liver dysfunction. To better understand the disease pathogenesis and the neurological symptoms of the NGLY1 deficiency we generated and characterized midbrain organoids using patient-derived iPSCs from two patients with distinct disease-causing mutations-one homozygous for p. Q208X, the other compound heterozygous for p. L318P and p. R390P and CRISPR generated NGLY1 knockout iPSCs. We demonstrate that NGLY1 deficient midbrain organoids show altered neuronal development compared to one wild type (WT) organoid. Both neuronal (TUJ1) and astrocytic glial fibrillary acid protein markers were reduced in NGLY1 patient-derived midbrain organoids along with neurotransmitter GABA. Interestingly, staining for dopaminergic neuronal marker, tyrosine hydroxylase, revealed a significant reduction in patient iPSC derived organoids. These results provide a relevant NGLY1 disease model to investigate disease mechanisms and evaluate therapeutics for treatments of NGLY1 deficiency.

17.
Methods Mol Biol ; 2474: 93-105, 2022.
Article in English | MEDLINE | ID: mdl-35294759

ABSTRACT

The road to discover novel therapeutics for mental and neurological disorders has been severely hampered by the lack of access to relevant testing platforms. Currently, roughly 0.1% of drugs that show promise in preclinical testing make it to Phase I clinical trials, and 90% of those drugs go on to fail FDA approval. One of the reasons responsible for this low success rate is that conventional two-dimensional (2D) cell culture models are not accurate enough predictors of how drugs will work in humans. Three-dimensional (3D) brain organoids differentiated from induced pluripotent stem cells (iPSCs) to resemble specific parts of the human brain, which include architecture composition and physiology, can provide an alternative system that may lead to breakthroughs in key areas of drug testing and toxicological evaluation. Having reliable and scalable iPSC-derived brain organoid models that can much more accurately predict human drug responses will significantly increase success rate in developing treatments for brain-related disorders.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Brain , Cell Culture Techniques/methods , Cell Differentiation/physiology , Humans
18.
Biol Psychiatry ; 92(10): 815-826, 2022 11 15.
Article in English | MEDLINE | ID: mdl-34247782

ABSTRACT

BACKGROUND: Gene dosage imbalance caused by copy number variations (CNVs) is a prominent contributor to brain disorders. In particular, 15q11.2 CNV duplications and deletions have been associated with autism spectrum disorder and schizophrenia, respectively. The mechanism underlying these diametric contributions remains unclear. METHODS: We established both loss-of-function and gain-of-function mouse models of Cyfip1, one of four genes within 15q11.2 CNVs. To assess the functional consequences of altered CYFIP1 levels, we performed systematic investigations on behavioral, electrophysiological, and biochemical phenotypes in both mouse models. In addition, we utilized RNA immunoprecipitation sequencing (RIP-seq) analysis to reveal molecular targets of CYFIP1 in vivo. RESULTS: Cyfip1 loss-of-function and gain-of function mouse models exhibited distinct and shared behavioral abnormalities related to autism spectrum disorder and schizophrenia. RIP-seq analysis identified messenger RNA targets of CYFIP1 in vivo, including postsynaptic NMDA receptor (NMDAR) complex components. In addition, these mouse models showed diametric changes in levels of postsynaptic NMDAR complex components at synapses because of dysregulated protein translation, resulting in bidirectional alteration of NMDAR-mediated signaling. Importantly, pharmacological balancing of NMDAR signaling in these mouse models with diametric Cyfip1 dosages rescues behavioral abnormalities. CONCLUSIONS: CYFIP1 regulates protein translation of NMDAR and associated complex components at synapses to maintain normal synaptic functions and behaviors. Our integrated analyses provide insight into how gene dosage imbalance caused by CNVs may contribute to divergent neuropsychiatric disorders.


Subject(s)
Autism Spectrum Disorder , Mental Disorders , Mice , Animals , Receptors, N-Methyl-D-Aspartate/genetics , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , DNA Copy Number Variations , Mice, Inbred C57BL , N-Methylaspartate/genetics , Adaptor Proteins, Signal Transducing/genetics , Disease Models, Animal , RNA, Messenger , RNA
19.
Stem Cells ; 27(1): 138-49, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18927477

ABSTRACT

Several reports have documented the derivation of pluripotent cells (multipotent germline stem cells) from spermatogonial stem cells obtained from the adult mouse testis. These spermatogonia-derived stem cells express embryonic stem cell markers and differentiate to the three primary germ layers, as well as the germline. Data indicate that derivation may involve reprogramming of endogenous spermatogonia in culture. Here, we report the derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy. The cells express distinct markers of pluripotency, form embryoid bodies that contain derivatives of all three germ layers, maintain a normal XY karyotype, are hypomethylated at the H19 locus, and express high levels of telomerase. Teratoma assays indicate the presence of human cells 8 weeks post-transplantation but limited teratoma formation. Thus, these data suggest the potential to derive pluripotent cells from human testis biopsies but indicate a need for novel strategies to optimize hMGSC culture conditions and reprogramming.


Subject(s)
Pluripotent Stem Cells/cytology , Spermatogonia/cytology , Biomarkers/metabolism , Biopsy , Cell Differentiation , Cell Line , Cell Separation , Cell Shape , DNA Methylation , Fluorescent Antibody Technique , Gene Expression Profiling , Humans , Male , Minisatellite Repeats/genetics , Multipotent Stem Cells/cytology , Neurons/cytology , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/metabolism , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Spectral Karyotyping , Spermatogonia/metabolism , Sulfites , Telomerase/metabolism , Testis/cytology , Testis/metabolism
20.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31465303

ABSTRACT

Chromatin modifiers act to coordinate gene expression changes critical to neuronal differentiation from neural stem/progenitor cells (NSPCs). Lysine-specific methyltransferase 2D (KMT2D) encodes a histone methyltransferase that promotes transcriptional activation and is frequently mutated in cancers and in the majority (>70%) of patients diagnosed with the congenital, multisystem intellectual disability disorder Kabuki syndrome 1 (KS1). Critical roles for KMT2D are established in various non-neural tissues, but the effects of KMT2D loss in brain cell development have not been described. We conducted parallel studies of proliferation, differentiation, transcription, and chromatin profiling in KMT2D-deficient human and mouse models to define KMT2D-regulated functions in neurodevelopmental contexts, including adult-born hippocampal NSPCs in vivo and in vitro. We report cell-autonomous defects in proliferation, cell cycle, and survival, accompanied by early NSPC maturation in several KMT2D-deficient model systems. Transcriptional suppression in KMT2D-deficient cells indicated strong perturbation of hypoxia-responsive metabolism pathways. Functional experiments confirmed abnormalities of cellular hypoxia responses in KMT2D-deficient neural cells and accelerated NSPC maturation in vivo. Together, our findings support a model in which loss of KMT2D function suppresses expression of oxygen-responsive gene programs important to neural progenitor maintenance, resulting in precocious neuronal differentiation in a mouse model of KS1.


Subject(s)
Abnormalities, Multiple/genetics , Brain/growth & development , Cell Differentiation/genetics , DNA-Binding Proteins/deficiency , Face/abnormalities , Hematologic Diseases/genetics , Histone-Lysine N-Methyltransferase/deficiency , Myeloid-Lymphoid Leukemia Protein/deficiency , Neoplasm Proteins/deficiency , Neural Stem Cells/pathology , Neurons/pathology , Vestibular Diseases/genetics , Abnormalities, Multiple/pathology , Animals , Brain/cytology , Cell Hypoxia/genetics , Cell Proliferation/genetics , Chromatin/metabolism , DNA-Binding Proteins/genetics , Disease Models, Animal , Face/pathology , Female , Fibroblasts , Hematologic Diseases/pathology , Histone-Lysine N-Methyltransferase/genetics , Humans , Induced Pluripotent Stem Cells , Male , Mice , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Neoplasm Proteins/genetics , Oxygen/metabolism , Primary Cell Culture , RNA-Seq , Single-Cell Analysis , Skin/cytology , Skin/pathology , Vestibular Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL