Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39163114

ABSTRACT

Equine rotavirus species A (ERVA) G3P[12] and G14P[12] are two dominant genotypes that cause foal diarrhoea with a significant economic impact on the global equine industry. ERVA can also serve as a source of novel (equine-like) rotavirus species A (RVA) reassortants with zoonotic potential as those identified previously in 2013-2019 when equine G3-like RVA was responsible for worldwide outbreaks of severe gastroenteritis and hospitalizations in children. One hurdle to ERVA research is that the standard cell culture system optimized for human rotavirus replication is not efficient for isolating ERVA. Here, using an engineered cell line defective in antiviral innate immunity, we showed that both equine G3P[12] and G14P[12] strains can be rapidly isolated from diarrhoeic foals. The genome sequence analysis revealed that both G3P[12] and G14P[12] strains share the identical genotypic constellation except for VP7 and VP6 segments in which G3P[12] possessed VP7 of genotype G3 and VP6 of genotype I6 and G14P[12] had the combination of VP7 of genotype G14 and VP6 of genotype I2. Further characterization demonstrated that two ERVA genotypes have a limited cross-neutralization. The lack of an in vitro broad cross-protection between both genotypes supported the increased recent diarrhoea outbreaks due to equine G14P[12] in foals born to dams immunized with the inactivated monovalent equine G3P[12] vaccine. Finally, using the structural modelling approach, we provided the genetic basis of the antigenic divergence between ERVA G3P[12] and G14P[12] strains. The results of this study will provide a framework for further investigation of infection biology, pathogenesis and cross-protection of equine rotaviruses.


Subject(s)
Antigens, Viral , Diarrhea , Genotype , Horse Diseases , Rotavirus Infections , Rotavirus , Animals , Horses , Rotavirus/genetics , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus/classification , Rotavirus Infections/veterinary , Rotavirus Infections/virology , Rotavirus Infections/immunology , Horse Diseases/virology , Horse Diseases/immunology , Diarrhea/virology , Diarrhea/veterinary , Antigens, Viral/genetics , Antigens, Viral/immunology , Genome, Viral/genetics , Phylogeny , Cell Line
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34475219

ABSTRACT

Group A rotaviruses cause severe gastroenteritis in infants and young children worldwide, with P[II] genogroup rotaviruses (RVs) responsible for >90% of global cases. RVs have diverse host ranges in different human and animal populations determined by host histo-blood group antigen (HBGA) receptor polymorphism, but details governing diversity, host ranges, and species barriers remain elusive. In this study, crystal structures of complexes of the major P[II] genogroup P[4] and P[8] genotype RV VP8* receptor-binding domains together with Lewis epitope-containing LNDFH I glycans in combination with VP8* receptor-glycan ligand affinity measurements based on NMR titration experiments revealed the structural basis for RV genotype-specific switching between ßß and ßα HBGA receptor-binding sites that determine RV host ranges. The data support the hypothesis that P[II] RV evolution progressed from animals to humans under the selection of type 1 HBGAs guided by stepwise host synthesis of type 1 ABH and Lewis HBGAs. The results help explain disease burden, species barriers, epidemiology, and limited efficacy of current RV vaccines in developing countries. The structural data has the potential to impact the design of future vaccine strategies against RV gastroenteritis.


Subject(s)
Blood Group Antigens/immunology , Evolution, Molecular , Rotavirus/genetics , Crystallography, X-Ray , Host Specificity/genetics , Humans , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Rotavirus/chemistry , Rotavirus/immunology , Viral Nonstructural Proteins/chemistry , Viral Vaccines/immunology
3.
Proteins ; 88(9): 1143-1153, 2020 09.
Article in English | MEDLINE | ID: mdl-32092202

ABSTRACT

Nostoc sp. PCC 7120 are filamentous cyanobacteria capable of both oxygenic photosynthesis and nitrogen fixation, with the latter taking place in specialized cells known as heterocysts that terminally differentiate from vegetative cells under conditions of nitrogen starvation. Cyanobacteria have existed on earth for more than 2 billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. PCC 7120 may also represent the oldest multicellular organisms on earth that undergo cell differentiation. Pentapeptide repeat proteins (PRPs), which occur most abundantly in cyanobacteria, adopt a right-handed quadrilateral ß-helical structure, also referred to as a repeat five residue (Rfr) fold, with four-consecutive pentapeptide repeats constituting a single coil in the ß-helical structure. PRPs are predicted to exist in all compartments within cyanobacteria including the thylakoid and cell-wall membranes as well as the cytoplasm and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical function of PRPs in cyanobacteria remains largely unknown. Here we report the crystal structure of Alr1298, a PRP from Nostoc sp. PCC 7120 predicted to reside in the cytoplasm. The structure displays the typical right-handed quadrilateral ß-helical structure and includes a four-α-helix cluster capping the N-terminus and a single α-helix capping the C-terminus. A gene cluster analysis indicated that Alr1298 may belong to an operon linked to cell proliferation and/or thylakoid biogenesis. Elevated alr1298 gene expression following nitrogen starvation indicates that Alr1298 may play a role in response to nitrogen starvation and/or heterocyst differentiation.


Subject(s)
Bacterial Proteins/chemistry , Nostoc/chemistry , Oligopeptides/chemistry , Oxygen/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cell Wall/chemistry , Cell Wall/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Models, Molecular , Nitrogen Fixation/physiology , Nostoc/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Oxidation-Reduction , Oxygen/metabolism , Photosynthesis/physiology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
4.
Metabolomics ; 14(3): 28, 2018 01 31.
Article in English | MEDLINE | ID: mdl-30830358

ABSTRACT

INTRODUCTION: Comparative metabolic profiling of different human cancer cell lines can reveal metabolic pathways up-regulated or down-regulated in each cell line, potentially providing insight into distinct metabolism taking place in different types of cancer cells. It is noteworthy, however, that human cell lines available from public repositories are deposited with recommended media for optimal growth, and if cell lines to be compared are cultured on different growth media, this introduces a potentially serious confounding variable in metabolic profiling studies designed to identify intrinsic metabolic pathways active in each cell line. OBJECTIVES: The goal of this study was to determine if the culture media used to grow human cell lines had a significant impact on the measured metabolic profiles. METHODS: NMR-based metabolic profiles of hydrophilic extracts of three human pancreatic cancer cell lines, AsPC-1, MiaPaCa-2 and Panc-1, were compared after culture on Dulbecco's Modified Eagle Medium (DMEM) or Roswell Park Memorial Institute (RPMI-1640) medium. RESULTS: Comparisons of the same cell lines cultured on different media revealed that the concentrations of many metabolites depended strongly on the choice of culture media. Analyses of different cell lines grown on the same media revealed insight into their metabolic differences. CONCLUSION: The choice of culture media can significantly impact metabolic profiles of human cell lines and should be considered an important variable when designing metabolic profiling studies. Also, the metabolic differences of cells cultured on media recommended for optimal growth in comparison to a second growth medium can reveal critical insight into metabolic pathways active in each cell line.


Subject(s)
Culture Media/pharmacology , Metabolome/drug effects , Cell Line, Tumor , Humans , Magnetic Resonance Spectroscopy/standards
5.
Biophys J ; 112(10): 2075-2088, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28538145

ABSTRACT

At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed ß-helices typically consisting of mixtures of type II and type IV ß-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II ß-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the ß-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy compared to that required for displacement of a single coil to facilitate amide hydrogen exchange in either the terminal or penultimate coils.


Subject(s)
Amides/metabolism , Arabidopsis Proteins/metabolism , Hydrogen/metabolism , Amides/chemistry , Arabidopsis , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Circular Dichroism , Escherichia coli , Freezing , Hydrogen/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Protein Stability , Protein Structure, Secondary
6.
J Bacteriol ; 196(5): 1113-21, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24375104

ABSTRACT

In response to a lack of environmental combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocyst cells in a periodic pattern. HetR is a transcription factor that coordinates the regulation of this developmental program. An inverted repeat-containing sequence in the hepA promoter required for proheterocyst-specific transcription was identified based on sequence similarity to a previously characterized binding site for HetR in the promoter of hetP. The binding affinity of HetR for the hepA site is roughly an order of magnitude lower than that for the hetP binding site. A BLAST search of the Anabaena genome identified 166 hepA-like sites that occur as single or tandem sites (two binding sites separated by 13 bp). The vast majority of these sites are present in predicted intergenic regions. HetR bound five representative single binding sites in vitro, and binding was abrogated by transversions in the binding sites that conserved the inverted repeat nature of the sites. Binding to four representative tandem sites was not observed. Transcriptional fusions of the green fluorescent protein gene gfp with putative promoter regions associated with the representative binding sites indicated that HetR could function as either an activator or repressor and that activation was cell-type specific. Taken together, we have expanded the direct HetR regulon and propose a model in which three categories of HetR binding sites, based on binding affinity and nucleotide sequence, contribute to three of the four phases of differentiation.


Subject(s)
Anabaena/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Regulon/physiology , Anabaena/classification , Anabaena/genetics , Bacterial Proteins/genetics , Binding Sites , Plasmids , Protein Binding , Transcription, Genetic
7.
Virology ; 597: 110138, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880069

ABSTRACT

The hemagglutinin-esterase-fusion (HEF) protein binds 9-O-acetylated sialic acids-containing glycans on the cell surface and drives influenza D virus (IDV) entry. The HEF is a primary determinant of the exceptional thermal and acid stability observed in IDV infection biology. Here, we expressed and purified the receptor binding domain (RBD) of the IDV HEF protein in Escherichia coli and characterized its receptor binding and antigenic properties. The data from these experiments indicate that (i) the RBD can bind with specificity to turkey red blood cells (RBC), and its binding can be specifically inhibited by IDV antibody; (ii) the RBD efficiently binds to the cell surface of MDCK cells expressing the receptor of IDV; and (iii) anti-RBD antibodies are capable of blocking RBD attachment to MDCK cells as well as of inhibiting the virus from agglutinating RBCs. These observations support the utility of this RBD in future receptor and entry studies of IDV.


Subject(s)
Erythrocytes , Escherichia coli , Protein Binding , Receptors, Virus , Escherichia coli/genetics , Escherichia coli/metabolism , Animals , Dogs , Receptors, Virus/metabolism , Receptors, Virus/genetics , Madin Darby Canine Kidney Cells , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/immunology , Hemagglutinins, Viral/metabolism , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Gene Expression , Antibodies, Viral/immunology , Humans , Protein Domains , Deltainfluenzavirus
8.
J Biomol NMR ; 55(1): 47-58, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23180051

ABSTRACT

Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly (15)N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/(15)N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k (-1), which was 0.037 ± 0.005 min(-1) derived from DEER experiments with a corresponding half-life time of 18.7 min. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein-protein and protein-DNA complex studies.


Subject(s)
Electron Spin Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Protein Subunits/chemistry , Proteins/chemistry , Algorithms , Computer Simulation , Protein Multimerization
9.
Biochemistry ; 51(12): 2436-42, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22397695

ABSTRACT

Heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120 occurs at regular intervals under nitrogen starvation and is regulated by a host of signaling molecules responsive to availability of fixed nitrogen. The heterocyst differentiation inhibitor PatS contains the active pentapeptide RGSGR (PatS-5) at its C-terminus considered the minimum PatS fragment required for normal heterocyst pattern formation. PatS-5 is known to bind HetR, the master regulator of heterocyst differentiation, with a moderate affinity and a submicromolar dissociation constant. Here we characterized the affinity of HetR for several PatS C-terminal fragments by measuring the relative ability of each fragment to knockdown HetR binding to DNA in electrophoretic mobility shift assays and using isothermal titration calorimetry (ITC). HetR bound to PatS-6 (ERGSGR) >30 times tighter (K(d) = 7 nM) than to PatS-5 (K(d) = 227 nM) and >1200 times tighter than to PatS-7 (DERGSGR) (K(d) = 9280 nM). No binding was detected between HetR and PatS-8 (CDERGSGR). Quantitative binding constants obtained from ITC measurements were consistent with qualitative results from the gel shift knockdown assays. CW EPR spectroscopy confirmed that PatS-6 bound to a MTSL spin-labeled HetR L252C mutant at a 10-fold lower concentration compared to PatS-5. Substituting the PatS-6 N-terminal glutamate to aspartate, lysine, or glycine did not alter binding affinity, indicating that neither the charge nor size of the N-terminal residue's side chain played a role in enhanced HetR binding to PatS-6, but rather increased binding affinity resulted from new interactions with the PatS-6 N-terminal residue peptide backbone.


Subject(s)
Anabaena , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Peptide Fragments/metabolism , Amino Acid Substitution , Base Sequence , Calorimetry , Electron Spin Resonance Spectroscopy , Electrophoretic Mobility Shift Assay , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Substrate Specificity , Thermodynamics
10.
Biochemistry ; 51(37): 7239-49, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22876860

ABSTRACT

The solution nuclear magnetic resonance (NMR) structures and backbone (15)N dynamics of the specialized acyl carrier protein (ACP), RpAcpXL, from Rhodopseudomonas palustris, in both the apo form and holo form modified by covalent attachment of 4'-phosphopantetheine at S37, are virtually identical, monomeric, and correspond to the closed conformation. The structures have an extra α-helix compared to the archetypical ACP from Escherichia coli, which has four helices, resulting in a larger opening to the hydrophobic cavity. Chemical shift differences between apo- and holo-RpAcpXL indicated some differences in the hinge region between α2 and α3 and in the hydrophobic cavity environment, but corresponding changes in nuclear Overhauser effect cross-peak patterns were not detected. In contrast to the NMR structures, apo-RpAcpXL was observed in an open conformation in crystals that diffracted to 2.0 Å resolution, which resulted from movement of α3. On the basis of the crystal structure, the predicted biological assembly is a homodimer. Although the possible biological significance of dimerization is unknown, there is potential that the resulting large shared hydrophobic cavity could accommodate the very long-chain fatty acid (28-30 carbons) that this specialized ACP is known to synthesize and transfer to lipid A. These structures are the first representatives of the AcpXL family and the first to indicate that dimerization may be important for the function of these specialized ACPs.


Subject(s)
Acyl Carrier Protein/chemistry , Bacterial Proteins/chemistry , Lipid A/biosynthesis , Lipid A/chemistry , Protein Multimerization , Rhodopseudomonas/chemistry , Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Rhodopseudomonas/metabolism
11.
Biochemistry ; 50(43): 9212-24, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21942265

ABSTRACT

HetR, master regulator of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120, stimulates heterocyst differentiation via transcriptional autoregulation and is negatively regulated by PatS and HetN, both of which contain the active pentapeptide RGSGR. However, the direct targets of PatS and HetN remain uncertain. Here, we report experimental evidence for direct binding between HetR and the C-terminal RGSGR pentapeptide, PatS-5. Strains with a hetR allele coding for conservative substitutions at residues 250-256 had altered patterns of heterocysts and, in some cases, reduced sensitivity to PatS-5. Cysteine scanning mutagenesis coupled with electron paramagnetic resonance (EPR) spectroscopy showed quenching of spin label motion at HetR amino acid 252 upon titration with PatS-5, indicating direct binding of PatS-5 to HetR. Gel shift assays indicated that PatS-5 disrupted binding of HetR to a 29 base pair inverted-repeat-containing DNA sequence upstream from hetP. Double electron-electron resonance EPR experiments confirmed that HetR existed as a dimer in solution and indicated that PatS-5 bound to HetR without disrupting the dimer form of HetR. Isothermal titration calorimetry experiments corroborated direct binding of PatS-5 to HetR with a K(d) of 227 nM and a 1:1 stoichiometry. Taken together, these results indicated that PatS-5 disrupted HetR binding to DNA through a direct HetR/PatS interaction. PatS-5 appeared to either bind in the vicinity of HetR amino acid L252 or, alternately, to bind in a remote site that leads to constrained motion of this amino acid via an allosteric effect or change in tertiary structure.


Subject(s)
Anabaena/metabolism , Bacterial Proteins/metabolism , Amino Acid Substitution , Anabaena/chemistry , Anabaena/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , DNA, Bacterial/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Multimerization , Thermodynamics
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1480-4, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22139148

ABSTRACT

At2g44920 belongs to a diverse family (Pfam PF00805) of pentapeptide-repeat proteins (PRPs) that are present in all known organisms except yeast. PRPs contain at least eight tandem-repeating sequences of five amino acids with an approximate consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Recent crystal structures show that PRPs adopt a highly regular four-sided right-handed ß-helical structure consisting mainly of type II and type IV ß-turns, sometimes referred to as a repeated five-residue (or Rfr) fold. Among sequenced genomes, PRP genes are most abundant in cyanobacteria, leading to speculation that PRPs play an important role in the unique lifestyle of photosynthetic cyanobacteria. Despite the recent structural characterization of several cyanobacterial PRPs, most of their functions remain unknown. Plants, whose chloroplasts are of cyanobacterial origin, have only four PRP genes in their genomes. At2g44920 is one of three PRPs located in the thylakoid lumen. Here, the crystal structure of a double methionine mutant of residues 81-224 of At2g44920, the naturally processed fragment of one of its full-length isoforms, is reported at 1.7 Å resolution. The structure of At2g44920 consists of the characteristic Rfr fold with five uninterrupted coils made up of 25 pentapeptide repeats and α-helical elements capping both termini. A disulfide bridge links the two α-helices with a conserved loop between the helical elements at its C-terminus. This structure represents the first structure of a PRP protein whose subcellular location has been experimentally confirmed to be the thylakoid lumen in a plant species.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Thylakoids/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Structure, Tertiary
13.
J Am Chem Soc ; 132(34): 11910-3, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20698532

ABSTRACT

There is a general need to develop more powerful and more robust methods for structural characterization of homodimers, homo-oligomers, and multiprotein complexes using solution-state NMR methods. In recent years, there has been increasing emphasis on integrating distinct and complementary methodologies for structure determination of multiprotein complexes. One approach not yet widely used is to obtain intermediate and long-range distance constraints from paramagnetic relaxation enhancements (PRE) and electron paramagnetic resonance (EPR)-based techniques such as double electron electron resonance (DEER), which, when used together, can provide supplemental distance constraints spanning to 10-70 A. In this Communication, we describe integration of PRE and DEER data with conventional solution-state nuclear magnetic resonance (NMR) methods for structure determination of Dsy0195, a homodimer (62 amino acids per monomer) from Desulfitobacterium hafniense. Our results indicate that combination of conventional NMR restraints with only one or a few DEER distance constraints and a small number of PRE constraints is sufficient for the automatic NMR-based structure determination program CYANA to build a network of interchain nuclear Overhauser effect constraints that can be used to accurately define both the homodimer interface and the global homodimer structure. The use of DEER distances as a source of supplemental constraints as described here has virtually no upper molecular weight limit, and utilization of the PRE constraints is limited only by the ability to make accurate assignments of the protein amide proton and nitrogen chemical shifts.


Subject(s)
Bacterial Proteins/chemistry , Desulfitobacterium/chemistry , Dimerization , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation
14.
Sci Total Environ ; 741: 140213, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32603937

ABSTRACT

Previous studies have shown that humic substances can serve as electron shuttle to catalyze bioreduction of structural Fe(III) in clay minerals, but it is unclear if clay-sorbed humic substances can serve the same function. It is unknown if the electron shuttling function is dependent on electron donor type and if humic substances undergo change as a result. In this study, humic acid (HA) and fulvic acid (FA) were sorbed onto nontronite (NAu-2) surface. Structural Fe(III) in HA- and FA-coated NAu-2 samples was bioreduced by Shewanella putrefaciens CN32 using H2 and lactate as electron donors. The results showed a contrasting effect of humic substances on bioreduction of structural Fe(III), depending on the electron donor type. With H2 as electron donor, humic substances had little effect on bioreduction of Fe(III) (the reduction extent: 26.2%, 27.4%, 29.3% for HA-coated, FA-coated, and uncoated NAu-2, respectively). In contrast, these substances significantly enhanced bioreduction of Fe(III) with lactate as electron donor (the reduction extent: 20.2%, 20.7%, 11.5% for HA-coated, FA-coated, and uncoated NAu-2, respectively). This contrasting behavior is likely caused by the difference in reaction free energy and electron transport process between H2 and lactate. When H2 served as electron donor, more energy was released than when lactate served as electron donor. In addition, because of different cellular locations of lactate dehydrogenase (inner membrane) and H2 hydrogenase (the periplasm), electrons generated by H2 hydrogenase may pass through the electron transport chain more rapidly than those generated from lactate dehydrogenase. Through their functions as electron shuttle and/or carbon source, clay-sorbed HA/FA underwent partial transformation to amino acids and other compounds. The availability of external carbon source played an important role in the amount and type of secondary product generation. These results have important implications for coupled iron and carbon biogeochemical cycles in clay- and humic substance-rich environments.


Subject(s)
Shewanella putrefaciens , Clay , Ferric Compounds , Humic Substances , Iron , Oxidation-Reduction
15.
J Struct Biol ; 165(1): 47-52, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18952182

ABSTRACT

The hetL gene from the cyanobacterium Nostoc sp. PCC 7120 encodes a 237 amino acid protein (25.6kDa) containing 40 predicted tandem pentapeptide repeats. Nostoc sp. PCC 7120 is a filamentous cyanobacterium that forms heterocysts, specialized cells capable of fixing atmospheric N(2) during nitrogen starvation in its aqueous environment. Under these conditions, heterocysts occur in a regular pattern of approximately one out of every 10-15 vegetative cells. Heterocyst differentiation is highly regulated involving hundreds of genes, one of which encodes PatS, thought to be an intercellular peptide signal made by developing heterocysts to inhibit heterocyst differentiation in neighboring vegetative cells, thus contributing to pattern formation and spacing of heterocysts along the filament. While overexpression of PatS suppresses heterocyst differentiation in Nostoc sp. PCC 7120, overexpression of HetL produces a multiple contiguous heterocyst phenotype with loss of the wild type heterocyst pattern, and strains containing extra copies of hetL allow heterocyst formation even in cells overexpressing PatS. Thus, HetL appears to interfere with heterocyst differentiation inhibition by PatS, however, the mechanism for HetL function remains unknown. As a first step towards exploring the mechanism for its biochemical function, the crystal structure of HetL has been solved at 2.0A resolution using sulfur anomalous scattering.


Subject(s)
Bacterial Proteins/chemistry , Nostoc/chemistry , Nostoc/physiology , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Sequence Alignment
16.
Planta ; 230(4): 819-25, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19636588

ABSTRACT

Ribonucleases (RNases) play a variety of cellular and biological roles in all three domains of life. In an attempt to perform RNA immuno-precipitation assays of Arabidopsis proteins, we found an EDTA-dependent RNase activity from Arabidopsis suspension tissue cultures. Further investigations proved that the EDTA-dependent RNase activity was plant specific. Characterization of the RNase activity indicated that it was insensitive to low pH and high concentration of NaCl. In the process of isolating the activity with cation exchange chromatography, we found that the EDTA dependency of the activity was lost. This led us to speculate that some metal ions, which inhibited the RNase activity, may be removed during cation exchange chromatography so that the nuclease activity was released. The EDTA dependency of the activity could be due to the ability of the EDTA chelating those metal ions, mimicking the effect of the cation exchange chromatography. Indeed, Zn(2+) strongly inhibited the activity, and the inhibition could be released by EDTA based on both in-solution and in-gel assays. In-gel assays identified two RNase activity bands. Mass spectrometry assays of those activity bands revealed more than 20 proteins. However, none of them has an apparent known nuclease domain, suggesting that one or more of those proteins might possess a currently uncharacterized nuclease domain. Our results may shed light on RNA metabolism in plants by introducing a novel plant-specific RNase activity.


Subject(s)
Arabidopsis/enzymology , Ribonucleases/metabolism , Zinc/pharmacology , Edetic Acid/pharmacology , Hydrogen-Ion Concentration/drug effects , Ribonucleases/antagonists & inhibitors , Ribonucleases/isolation & purification , Sodium Chloride/pharmacology , Species Specificity
17.
J Struct Biol X ; 3: 100010, 2019.
Article in English | MEDLINE | ID: mdl-32647815

ABSTRACT

Pentapeptide repeat proteins (PRPs) are found abundantly in cyanobacteria, numbering in the dozens in some genomes, e.g. in Nostoc sp. PCC 7120. PRPs, comprised of a repeating consensus sequence of five amino acids, adopt a distinctive right-handed quadrilateral ß-helical structure, also referred to as a repeat five residue (Rfr) fold, made up of stacks of coils formed by four consecutive pentapeptide repeats. The right-handed quadrilateral ß-helical PRP structure is constructed by repeating ß turns at each of four corners in a given coil, each causing a 90° change in direction of the polypeptide chain. Until now, all PRP structures have consisted either of type II and IV ß turns or exclusively of type II ß turns. Here, we report the first structure of a PRP comprised of type I and II ß turns, Alr5209 from Nostoc sp. PCC 7120. The alr5209 gene encodes 129 amino acids containing 16 tandem pentapeptide repeats. The Alr5209 structure was analyzed in comparison to all other PRPs to determine how type I ß turns can be accommodated in Rfr folds and the consequences of type I ß turns on the right-handed quadrilateral ß-helical structure. Given that Alr5209 represents the first PRP structure containing type I ß turns, the PRP consensus sequence was reevaluated and updated. Despite a growing number of PRP structural investigations, their function remains largely unknown. Genome analysis indicated that alr5209 resides in a five-gene operon (alr5208-alr5212) with Alr5211 annotated to be a NADH dehydrogenase indicating Alr5209 may be involved in oxidative phosphorylation.

18.
Metabolites ; 9(11)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683565

ABSTRACT

Metabolic profiling of cell line and tissue extracts involves sample processing that includes a drying step prior to re-dissolving the cell or tissue extracts in a buffer for analysis by GC/LC-MS or NMR. Two of the most commonly used drying techniques are centrifugal evaporation under vacuum (SpeedVac) and lyophilization. Here, NMR spectroscopy was used to determine how the metabolic profiles of hydrophilic extracts of three human pancreatic cancer cell lines, MiaPaCa-2, Panc-1 and AsPC-1, were influenced by the choice of drying technique. In each of the three cell lines, 40-50 metabolites were identified as having statistically significant differences in abundance in redissolved extract samples depending on the drying technique used during sample preparation. In addition to these differences, some metabolites were only present in the lyophilized samples, for example, n-methyl-α-aminoisobutyric acid, n-methylnicotimamide, sarcosine and 3-hydroxyisovaleric acid, whereas some metabolites were only present in SpeedVac dried samples, for example, trimethylamine. This research demonstrates that the choice of drying technique used during the preparation of samples of human cell lines or tissue extracts can significantly influence the observed metabolome, making it important to carefully consider the selection of a drying method prior to preparation of such samples for metabolic profiling.

19.
Int J Med Mushrooms ; 21(2): 131-141, 2019.
Article in English | MEDLINE | ID: mdl-30806220

ABSTRACT

Antibiotic-resistant bacteria are an increasing and serious health concern worldwide, and multidrug-resistant pathogens are increasingly emerging among patients across the United States. Researchers are exploring sources of traditional medicines, including mushrooms, to find new antibiotic compounds. In this study, the antibiotic activities of 75 mushrooms collected in the area surrounding Oxford, Ohio (USA), were assayed for antibiotic activity against 6 bacterial strains (Pseudomonas aeruginosa reference strains PAO1 and PA14, P. fluorescens, Bacillus subtilis, Staphylococcus epidermidis, and Micrococcus luteus). Mushroom samples were identified by using DNA ribotyping. We used methanol and water extracts of mushrooms in agar diffusion assays to screen for antibiotic activity toward each bacterial strain. A total of 25 mushroom species had antibacterial activity against at least 1 bacterium. Water extracts of Polyporus squamosus, Ganoderma applanatum, Lentinellus subaustralis, Laetiporus sulphureus, G. lucidum, and Trametes versicolor exhibited strong antibiotic activity against all bacterial strains tested. Water and methanol extracts from 25 mushroom species had significant activity against most of the bacteria tested. A minimum inhibitory concentration (MIC) against S. epidermidis was determined for all samples that exhibited antibiotic activity in the disk assay. The G. lucidum and L. sulphureus extracts displayed the strongest inhibition, with an MIC of 0.1 mg/mL.


Subject(s)
Agaricales/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Forests , Microbial Sensitivity Tests , Ohio , Species Specificity
20.
Mol Ther Oncolytics ; 8: 52-61, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29511732

ABSTRACT

High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

SELECTION OF CITATIONS
SEARCH DETAIL