Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Genomics ; 23(1): 709, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36258177

ABSTRACT

BACKGROUND: The extent and impact of evolutionary change occurring in natural populations in response to rapid anthropogenic impact is still poorly understood on the genome-wide level. Here, we explore the genetic structure, demographic history, population differentiation, and domestic introgression based on whole genome data of the endangered European wildcat in Germany, to assess potential genomic consequences of the species' recent spread across human-dominated cultural landscapes. RESULTS: Reconstruction of demographic history and introgression rates based on 47 wildcat and 37 domestic cat genomes suggested late introgression between wild and domestic cat, coinciding with the introduction of domestic cat during the Roman period, but overall relatively low rates of hybridization and introgression from domestic cats. Main population divergence found between an eastern and central German wildcat clade was found to be of rather recent origin (200 y), and thus the likely consequence of anthropogenic persecution and resulting isolation in population refugia. We found similar effective population sizes and no substantial inbreeding across populations. Interestingly, highly differentiated genes between wild cat populations involved in the tryptophan-kynurenine-serotonin pathway were revealed, which plays a role in behavioral processes such as stress susceptibility and tolerance, suggesting that differential selection acted in the populations. CONCLUSIONS: We found strong evidence for substantial recent anthropogenic impact on the genetic structure of European wildcats, including recent persecution-driven population divergence, as well as potential adaptation to human-dominate environments. In contrast, the relatively low levels of domestic introgression and inbreeding found in this study indicate a substantial level of "resistance" of this elusive species towards major anthropogenic impacts, such as the omnipresence of domestic cats as well as substantial habitat fragmentation. While those findings have strong implications for ongoing conservation strategies, we demand closer inspection of selective pressures acting on this and other wildlife species in anthropogenic environments.


Subject(s)
DNA, Mitochondrial , Tryptophan , Cats/genetics , Humans , Animals , DNA, Mitochondrial/genetics , Kynurenine , Serotonin , Anthropogenic Effects
2.
Mol Phylogenet Evol ; 133: 67-81, 2019 04.
Article in English | MEDLINE | ID: mdl-30594734

ABSTRACT

Tribe Euterpeae is an economically and ecologically important group of Neotropical palms (Arecaceae). Some species are hyperdominant in the Neotropics, and many constitute a good source of revenue. To reconstruct the biogeographical history and diversification of the Euterpeae, we inferred a robust dated molecular phylogenetic hypothesis including 82% of the species sequenced for five DNA regions (trnD-trnT, CISP4, WRKY6, RPB2, and PHYB). Ancestral range was estimated using all models available in BioGeoBEARS and Binary State Speciation and Extinction analysis was used to evaluate the association of biome and inflorescence type with diversification rates. All intergeneric relationships were resolved providing insight on the taxonomic controversy of Jessenia, Euterpe and Prestoea. Three widely distributed Neotropical species were non-monophyletic, inviting a revision of species circumscriptions. The Euterpeae started its diversification in the mid Eocene (40 Mya), with most species-level divergence events occurring in the last 10 million years. Four colonization events from Central to South America were inferred. Different diversification rates were associated with biomes. Lowland rainforest was inferred as the ancestral biome of Euterpeae, attesting to the importance of lowland adapted lineages on the assembly of the montane flora. The two-fold higher speciation rate for montane taxa (compared with lowland rainforest taxa) was contemporaneous to the Andean orogenic uplift. The specialized beetle pollination of Oenocarpus with its hippuriform (horsetail shape) inflorescence was not associated with diversification rates in Euterpeae.


Subject(s)
Arecaceae/classification , Arecaceae/genetics , Central America , Ecosystem , Phylogeny , Phylogeography , Rainforest , South America
4.
PLoS One ; 19(8): e0308724, 2024.
Article in English | MEDLINE | ID: mdl-39137187

ABSTRACT

Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.


Subject(s)
Animals, Wild , Genetic Variation , Genome , Animals , Cats/genetics , Animals, Wild/genetics , Australia , Islands , Evolution, Molecular , Hawaii , Genetics, Population , Whole Genome Sequencing , Domestication
5.
Ecol Evol ; 7(23): 10158-10174, 2017 12.
Article in English | MEDLINE | ID: mdl-29238545

ABSTRACT

The Caribbean archipelago is a region with an extremely complex geological history and an outstanding plant diversity with high levels of endemism. The aim of this study was to better understand the historical assembly and evolution of endemic seed plant genera in the Caribbean, by first determining divergence times of endemic genera to test whether the hypothesized Greater Antilles and Aves Ridge (GAARlandia) land bridge played a role in the archipelago colonization and second by testing South America as the main colonization source as expected by the position of landmasses and recent evidence of an asymmetrical biotic interchange. We reconstructed a dated molecular phylogenetic tree for 625 seed plants including 32 Caribbean endemic genera using Bayesian inference and ten calibrations. To estimate the geographic range of the ancestors of endemic genera, we performed a model selection between a null and two complex biogeographic models that included timeframes based on geological information, dispersal probabilities, and directionality among regions. Crown ages for endemic genera ranged from Early Eocene (53.1 Ma) to Late Pliocene (3.4 Ma). Confidence intervals for divergence times (crown and/or stem ages) of 22 endemic genera occurred within the GAARlandia time frame. Contrary to expectations, the Antilles appears as the main ancestral area for endemic seed plant genera and only five genera had a South American origin. In contrast to patterns shown for vertebrates and other organisms and based on our sampling, we conclude that GAARlandia did not act as a colonization route for plants between South America and the Antilles. Further studies on Caribbean plant dispersal at the species and population levels will be required to reveal finer-scale biogeographic patterns and mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL