Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Semin Cell Dev Biol ; 124: 3-14, 2022 04.
Article in English | MEDLINE | ID: mdl-33926791

ABSTRACT

The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.


Subject(s)
MicroRNAs , Neoplasms , Endothelial Cells/metabolism , Humans , Macrophages/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/pathology , Tumor Microenvironment/genetics
2.
J Magn Reson Imaging ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212126

ABSTRACT

BACKGROUND: Skeletal muscle mitochondrial oxidative phosphorylation (mtOXPHOS) is important for ATP generation and its dysfunction leads to exercise intolerance. Phosphorus magnetic resonance spectroscopy (31P-MRS) is a useful, noninvasive technique for mtOXPHOS assessment but has limitations. Creatine-weighted chemical exchange saturation transfer (CrCEST) MRI is a potential alternative to assess muscle bioenergetics. PURPOSE: To evaluate the interscan repeatability, intra- and interobserver reproducibility of CrCEST during mild plantar flexion exercise. STUDY TYPE: Retrospective. SUBJECTS: Twenty healthy volunteers (age 37.6 ± 12.4 years, 11 females). FIELD STRENGTH/SEQUENCE: 3 T/CEST imaging using gradient echo readout. ASSESSMENT: τCrCEST (postexercise Cr recovery time) was assessed in two scans for each participant, following mild plantar flexion exercises targeting the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles. Three observers measured τCrCEST for interobserver reproducibility. Three readings by one observer were used to measure intraobserver reproducibility. Two scans were used for within-participant interscan repeatability. STATISTICAL TESTS: Paired t tests, intraclass correlation coefficient (ICC), and Pearson correlation were conducted. Bland-Altman plots were used to analyze the interobserver variability. A P-value of 0.05 was considered statistically significant. RESULTS: There was excellent intra- (ICC ∈ 0.94 - 0.98 $$ \in \left[0.94-0.98\right] $$ ) and interobserver (ICC ∈ 0.9 - 0.98 $$ \in \left[0.9-0.98\right] $$ ) reproducibility, with moderate interscan repeatability for τCrCEST in LG and MG (ICC ∈ 0.54 - 0.74 $$ \in \left[0.54-0.74\right] $$ ) and poor-to-moderate interscan repeatability in Sol (ICC ∈ 0.24 - 0.53 $$ \in \left[0.24-0.53\right] $$ ). Excellent interobserver reproducibility was confirmed by Bland-Altman plots (fixed bias P-value ∈ 0.08 - 0.87 $$ \in \left[0.08-0.87\right] $$ ). DATA CONCLUSION: CrCEST MRI shows promise in assessing muscle bioenergetics by evaluating τCrCEST during mild plantar flexion exercise with reasonable reliability, particularly in LG and MG. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.

3.
Mol Psychiatry ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069342

ABSTRACT

Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.

4.
Cancer Metastasis Rev ; 41(2): 281-299, 2022 06.
Article in English | MEDLINE | ID: mdl-35511379

ABSTRACT

Esophageal cancer (EC) is frequently considered a lethal malignancy and is often identified at a later stage. It is one of the major causes of cancer-related deaths globally. The conventional treatment methods like chemotherapy, radiotherapy, and surgery offer limited efficacy and poor clinical outcome with a less than 25% 5-year survival rate. The poor prognosis of EC persists despite the growth in the development of diagnostic and therapeutic modalities to treat EC. This underlines the need to elucidate the complex molecular mechanisms that drive esophageal oncogenesis. Apart from the role of the tumor microenvironment and its structural and cellular components in tumorigenesis, mounting evidence points towards the involvement of the esophageal microbiome, inflammation, and their cross-talk in promoting esophageal cancer. The current review summarizes recent research that delineates the underlying molecular mechanisms by which the microbiota and inflammation promote the pathophysiology of esophageal cancer, thus unraveling targets for potential therapeutic intervention.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Microbiota , Carcinogenesis , Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic , Humans , Inflammation , Tumor Microenvironment
5.
J Transl Med ; 21(1): 171, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36869348

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS: In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and ß cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS: Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION: Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Hyperglycemia , MicroRNAs , Humans , Animals , Glycemic Control , Zebrafish , Vascular Endothelial Growth Factor A , Insulin , Glucose
6.
J Transl Med ; 21(1): 449, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37420216

ABSTRACT

Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.


Subject(s)
Hematologic Neoplasms , Multiple Myeloma , Neoplasms , Receptors, Chimeric Antigen , Humans , Artificial Intelligence , Neoplasms/therapy , Immunotherapy, Adoptive , Antigens, Neoplasm , Tumor Microenvironment , Cell- and Tissue-Based Therapy
7.
Mol Psychiatry ; 27(5): 2380-2392, 2022 05.
Article in English | MEDLINE | ID: mdl-35296811

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.


Subject(s)
Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/metabolism , Brain/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Synaptic Transmission
8.
Mol Cancer ; 21(1): 79, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35303879

ABSTRACT

Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes.


Subject(s)
Neoplastic Cells, Circulating , Proteomics , Biomarkers, Tumor/genetics , Humans , Liquid Biopsy/methods , Neoplastic Cells, Circulating/pathology , Prognosis
9.
J Transl Med ; 20(1): 534, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36401282

ABSTRACT

Gene editing has great potential in treating diseases caused by well-characterized molecular alterations. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based gene-editing tools has substantially improved the precision and efficiency of gene editing. The CRISPR/Cas9 system offers several advantages over the existing gene-editing approaches, such as its ability to target practically any genomic sequence, enabling the rapid development and deployment of novel CRISPR-mediated knock-out/knock-in methods. CRISPR/Cas9 has been widely used to develop cancer models, validate essential genes as druggable targets, study drug-resistance mechanisms, explore gene non-coding areas, and develop biomarkers. CRISPR gene editing can create more-effective chimeric antigen receptor (CAR)-T cells that are durable, cost-effective, and more readily available. However, further research is needed to define the CRISPR/Cas9 system's pros and cons, establish best practices, and determine social and ethical implications. This review summarizes recent CRISPR/Cas9 developments, particularly in cancer research and immunotherapy, and the potential of CRISPR/Cas9-based screening in developing cancer precision medicine and engineering models for targeted cancer therapy, highlighting the existing challenges and future directions. Lastly, we highlight the role of artificial intelligence in refining the CRISPR system's on-target and off-target effects, a critical factor for the broader application in cancer therapeutics.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , CRISPR-Cas Systems/genetics , Artificial Intelligence , Gene Editing/methods , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy
10.
Mol Cancer ; 20(1): 2, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33390169

ABSTRACT

Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.


Subject(s)
Chemokines/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Molecular Targeted Therapy , Animals , Chemokines/metabolism , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasm Metastasis , Tumor Microenvironment/genetics
11.
Nutr Cancer ; 73(2): 181-195, 2021.
Article in English | MEDLINE | ID: mdl-32285707

ABSTRACT

Curcumae Rhizoma, also known as Ezhu is a traditional Chinese medicine that has been used for many centuries against several diseases. The rhizome of the plant is composed of curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin), and essential volatile oils including curcumol, curdione, and germacrone. While curcuminoids have been extensively studied for their antimicrobial, antioxidant, anti-inflammatory and anticancer properties, the therapeutic efficacy of curcumol is still emerging. Recent studies have shown anticancer properties of curcumol against multiple solid tumors such as breast, colorectal, head and neck, and lung adenocarcinomas. The underlying anti-tumor mechanisms revealed inhibition of several signaling pathways (NF-κB, MAPK, PI-3K/AKT, and GSK-3ß) associated with cell proliferation, survival, anti-apoptosis, invasion and metastasis. Besides curcumol, extracts from the Curcumae Rhizoma roots possess many other terpenoids such as ß-elemene, δ-elemene, germacrone, furanodiene and furanodienone with known anticancer properties. In this review, we comprehensively focused on the composition of Curcumae Rhizoma essential oils, their structure, isolation and therapeutic uses of curcumol to aid in the improvement and development of novel drugs with minimal cytotoxicity, enhanced efficacy, and less cost.


Subject(s)
Oils, Volatile , Sesquiterpenes , Glycogen Synthase Kinase 3 , Humans , Oils, Volatile/pharmacology , Rhizome , Sesquiterpenes/pharmacology , Terpenes
12.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925575

ABSTRACT

Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.


Subject(s)
Carcinoma, Squamous Cell/immunology , Head and Neck Neoplasms/immunology , Tumor Microenvironment/immunology , Apoptosis , Carcinoma, Squamous Cell/metabolism , Chemokines/immunology , Cytokines/immunology , Head and Neck Neoplasms/metabolism , Humans , Prognosis , Signal Transduction , Tumor Microenvironment/physiology
13.
Mol Cancer ; 19(1): 57, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32164715

ABSTRACT

Early-stage detection of leukemia is a critical determinant for successful treatment of the disease and can increase the survival rate of leukemia patients. The factors limiting the current screening approaches to leukemia include low sensitivity and specificity, high costs, and a low participation rate. An approach based on novel and innovative biomarkers with high accuracy from peripheral blood offers a comfortable and appealing alternative to patients, potentially leading to a higher participation rate.Recently, non-coding RNAs due to their involvement in vital oncogenic processes such as differentiation, proliferation, migration, angiogenesis and apoptosis have attracted much attention as potential diagnostic and prognostic biomarkers in leukemia. Emerging lines of evidence have shown that the mutational spectrum and dysregulated expression of non-coding RNA genes are closely associated with the development and progression of various cancers, including leukemia. In this review, we highlight the expression and functional roles of different types of non-coding RNAs in leukemia and discuss their potential clinical applications as diagnostic or prognostic biomarkers and therapeutic targets.


Subject(s)
Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Leukemia/pathology , RNA, Long Noncoding/genetics , Animals , Disease Progression , Humans , Leukemia/drug therapy , Leukemia/genetics , Neoplasm Metastasis
14.
J Transl Med ; 18(1): 471, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298096

ABSTRACT

Immunotherapy is an efficient way to cure cancer by modulating the patient's immune response. However, the immunotherapy response is heterogeneous and varies between individual patients and cancer subtypes, reinforcing the need for early benefit predictors. Evaluating the infiltration of immune cells in the tumor and changes in cell-intrinsic tumor characteristics provide potential response markers to treatment. However, this approach requires invasive sampling and may not be suitable for real-time monitoring of treatment response. The recent emergence of quantitative imaging biomarkers provides promising opportunities. In vivo imaging technologies that interrogate T cell responses, metabolic activities, and immune microenvironment could offer a powerful tool to monitor the cancer response to immunotherapy. Advances in imaging techniques to identify tumors' immunological characteristics can help stratify patients who are more likely to respond to immunotherapy. This review discusses the metabolic events that occur during T cell activation and differentiation, anti-cancer immunotherapy-induced T cell responses, focusing on non-invasive imaging techniques to monitor T cell metabolism in the search for novel biomarkers of response to cancer immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Biomarkers , Biomarkers, Tumor , Humans , Immunologic Factors , Neoplasms/therapy , T-Lymphocytes , Tumor Microenvironment
15.
Cancer Treat Res ; 180: 3-50, 2020.
Article in English | MEDLINE | ID: mdl-32215865

ABSTRACT

Noninvasive imaging of functional and molecular changes in cancer has become an indispensable tool for studying cancer in vivo. Targeting the functional and molecular changes in cancer imaging provides a platform for the in vivo analysis of the mechanisms such as gene expression, signal transduction, biochemical reactions, regulatory pathways, cell trafficking, and drug action underlying cancer noninvasively. The main focus of imaging in cancer is the development of new contrast methods/molecular probes for the early diagnosis and the precise evaluation of therapy response. In clinical setup, imaging modalities facilitate screening, prediction, staging, biopsy and therapy guidance, therapy response, therapy planning, and prognosis of cancer. In this book chapter, we review different established and emerging in vivo imaging modalities and their applications in monitoring functional, molecular, and metabolic changes in cancer.


Subject(s)
Neoplasms/diagnostic imaging , Contrast Media , Early Detection of Cancer , Humans , Molecular Probes
16.
Int J Mol Sci ; 21(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599917

ABSTRACT

Post-traumatic stress disorder (PTSD) is a highly disabling condition, increasingly recognized as both a disorder of mental health and social burden, but also as an anxiety disorder characterized by fear, stress, and negative alterations in mood. PTSD is associated with structural, metabolic, and molecular changes in several brain regions and the neural circuitry. Brain areas implicated in the traumatic stress response include the amygdala, hippocampus, and prefrontal cortex, which play an essential role in memory function. Abnormalities in these brain areas are hypothesized to underlie symptoms of PTSD and other stress-related psychiatric disorders. Conventional methods of studying PTSD have proven to be insufficient for diagnosis, measurement of treatment efficacy, and monitoring disease progression, and currently, there is no diagnostic biomarker available for PTSD. A deep understanding of cutting-edge neuroimaging genetic approaches is necessary for the development of novel therapeutics and biomarkers to better diagnose and treat the disorder. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review article explains the rationale and practical utility of neuroimaging genetics in PTSD and how the resulting information can aid the diagnosis and clinical management of patients with PTSD.


Subject(s)
Gene Regulatory Networks , Genetic Markers , Genome-Wide Association Study , Neuroimaging/methods , Stress Disorders, Post-Traumatic/pathology , Animals , Humans , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/genetics
17.
Int J Mol Sci ; 21(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952355

ABSTRACT

Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.


Subject(s)
Carcinogenesis/genetics , Claudin-1/genetics , Epithelial Cells/metabolism , Neoplasms/genetics , Tight Junctions/genetics , Tumor Suppressor Proteins/genetics , Cell Proliferation/genetics , Claudin-1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/metabolism , Survival Analysis , Tight Junctions/metabolism , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL