Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Bioorg Chem ; 97: 103648, 2020 04.
Article in English | MEDLINE | ID: mdl-32065882

ABSTRACT

Natural protoberberine alkaloids were first identified and characterized as potent, selective and cellular active lysine specific demethylase 1 (LSD1) inhibitors. Due to our study, isoquinoline-based tetracyclic scaffold was identified as the key structural element for their anti-LSD1 activity, subtle changes of substituents attached to the core structure led to dramatic changes of the activity. Among these protoberberine alkaloids, epiberberine potently inhibited LSD1 (IC50 = 0.14 ± 0.01 µM) and was highly selective to LSD1 over MAO-A/B. Furthermore, epiberberine could induce the expression of CD86, CD11b and CD14 in THP-1 and HL-60 cells, confirming its cellular activity of inducing acute myeloid leukemia (AML) cells differentiation. Moreover, epiberberine prolonged the survival of THP-1 cells bearing mice and inhibited the growth of AML cells in vivo without obvious global toxicity. These findings give the potential application of epiberberine in AML treatment, and the isoquinoline-based tetracyclic scaffold could be used for further development of LSD1 inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Berberine Alkaloids/therapeutic use , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Animals , Antineoplastic Agents/chemistry , Berberine Alkaloids/pharmacology , Cell Differentiation/drug effects , Cell Survival/drug effects , Female , HL-60 Cells , Histone Demethylases/metabolism , Humans , Mice , Mice, SCID
2.
Bioorg Chem ; 87: 688-698, 2019 06.
Article in English | MEDLINE | ID: mdl-30953888

ABSTRACT

Sanggenon O (SO) is a Diels-Alder type adduct extracted fromMorus alba, which has been used for its anti-inflammatory action in the Oriental medicine. However, whether it has regulatory effect on human cancer cell proliferation and what the underlying mechanism remains unknown. Here, we found that SO could significantly inhibit the growth and proliferation of A549 cells and induce its pro-apoptotic action through a caspase-dependent pathway. It could also impair the mitochondria which can be reflected by mitochondrial membrane permeabilization. Besides, SQSTM1 up-regulation and autophagic flux measurement demonstrated that exposure to SO led to autophagosome accumulation, which plays a protective role in SO-treated cells. In addition, knocking down of LC3B increased SO triggered apoptotic cell rates. These results indicated that SO has great potential as a promising candidate combined with autophagy inhibitor for the treatment of NSCLC. In conclusion, our results identified a novel mechanism by which SO exerts potent anticancer activity.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Flavonoids/pharmacology , Protective Agents/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flavonoids/chemical synthesis , Flavonoids/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Conformation , Molecular Docking Simulation , Protective Agents/chemical synthesis , Protective Agents/chemistry , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
3.
Life Sci ; 242: 117247, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31899223

ABSTRACT

AIMS: Programmed death ligand 1 (PD-L1, CD274) has been reported to be expressed abnormally in many cancers, nevertheless, effect of PD-L1 on tumor cells remains unclear, especially in gastric cancer (GC). This study aimed to investigate the role of PD-L1 in metastasis and differentiation in GC. MAIN METHODS: Immunohistochemistry was performed on 237 paired GC tissues. shPD-L1 cells were generated by lentivirus shRNA solution and PD-L1-overexpressing cells were constructed by pcDNA3.1. Expression of PD-L1 and E-cadherin in GC cells were detected by western blot. KEY FINDINGS: PD-L1 expression was significantly lower in GC than that in adjacent normal tissues, especially in poorly differentiated and metastatic GC, but was positively correlated to survival time of patients. Moreover, PD-L1 ablation could decrease E-cadherin expression, promote cell migration and wound repair ability. In turn, overexpression of PD-L1 increased E-cadherin expression and inhibited wound repair ability. At the same time, All-trans retinoic acid (ATRA), which has the properties of pro-differentiation and inhibition of invasion and metastasis, upregulated the expression of PD-L1 and E-cadherin. SIGNIFICANCE: These findings not only identify PD-L1 may have a positive role for the treatment of GC, but also implicate that ATRA combined PD-L1 antibody drugs may enhance anti-tumor Immunity in GC.


Subject(s)
B7-H1 Antigen/metabolism , Stomach Neoplasms/pathology , B7-H1 Antigen/physiology , Blotting, Western , Cadherins/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Stomach Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL