Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(21): e2218958120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186863

ABSTRACT

Major depressive disorder (MDD) is widely hypothesized to result from disordered communication across brain-wide networks. Yet, prior resting-state-functional MRI (rs-fMRI) studies of MDD have studied zero-lag temporal synchrony (functional connectivity) in brain activity absent directional information. We utilize the recent discovery of stereotyped brain-wide directed signaling patterns in humans to investigate the relationship between directed rs-fMRI activity, MDD, and treatment response to FDA-approved neurostimulation paradigm termed Stanford neuromodulation therapy (SNT). We find that SNT over the left dorsolateral prefrontal cortex (DLPFC) induces directed signaling shifts in the left DLPFC and bilateral anterior cingulate cortex (ACC). Directional signaling shifts in the ACC, but not the DLPFC, predict improvement in depression symptoms, and moreover, pretreatment ACC signaling predicts both depression severity and the likelihood of SNT treatment response. Taken together, our findings suggest that ACC-based directed signaling patterns in rs-fMRI are a potential biomarker of MDD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depression , Magnetic Resonance Imaging , Brain/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Prefrontal Cortex/diagnostic imaging
2.
Mol Psychiatry ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844532

ABSTRACT

In clinical practice, theta burst stimulation (TBS) presents as a more efficient and potentially more effective therapeutic modality than conventional repetitive transcranial magnetic stimulation (rTMS), as it allows for the delivery of more stimuli in less time and at similar intensities. To date, accelerated treatment plans according to various continuous (cTBS) and intermittent TBS (iTBS) protocols for depression have been proposed. To investigate which of the TBS protocols provided a favorable risk-benefit balance for individuals with depression, this systematic review and random-effects model network meta-analysis was conducted. The study outcomes included response rate (primary), depression symptom improvement, remission rate, all-cause discontinuation rate, incidence of switch to mania, and incidence of headache/discomfort at treatment site. In this meta-analysis, a total of 23 randomized controlled trials (n = 960, mean age = 41.88 years, with 60.78% females) were included. Approximately 69.57% of the trials included individuals with an exclusive diagnosis of major depressive disorder. The following six TBS protocols (target) were evaluated: cTBS (right-dorsolateral prefrontal cortex [R-DLPFC]), cTBS (R-DLPFC) + iTBS (left-DLPFC [L-DLPFC]), iTBS (L-DLPFC), iTBS (L-DLPFC) + iTBS (R-DLPFC), iTBS (left-dorsomedial prefrontal cortex) + iTBS (right-dorsomedial prefrontal cortex), and iTBS (occipital lobe). Compared to sham, cTBS (R-DLPFC) + iTBS (L-DLPFC), iTBS (L-DLPFC), and iTBS (occipital lobe) had a higher response rate (k = 23); cTBS (R-DLPFC) + iTBS (L-DLPFC) and iTBS (L-DLPFC) dominated in the depression symptom improvement (k = 23); and iTBS (L-DLPFC) had a higher remission rate (k = 15). No significant differences were found for all-cause discontinuation rate (k = 17), incidence of switch to mania (k = 7), and incidence of headache/discomfort at treatment site (k = 10) between any TBS protocols and sham. Thus, cTBS (R-DLPFC) + iTBS (L-DLPFC) and iTBS (L-DLPFC) demonstrate favorable risk-benefit balance for the treatment of depression.

3.
J Biol Chem ; 299(9): 105046, 2023 09.
Article in English | MEDLINE | ID: mdl-37453661

ABSTRACT

Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D, and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore-induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post-translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 directly regulates protein lipoylation by binding the lipoyl synthase (LIAS) enzyme promoting its functional binding to the lipoyl carrier protein GCSH and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss of function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling established that FDX1 loss-of-function results in the induction of both compensatory metabolism-related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-function is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting its role in cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.


Subject(s)
Ferredoxins , Lipoylation , Sulfurtransferases , Humans , Ferredoxins/genetics , Ferredoxins/metabolism , Lipoylation/genetics , Protein Binding , Cell Respiration/genetics , Cell Proliferation/genetics , Metabolome , Sulfurtransferases/metabolism
4.
Biomacromolecules ; 25(6): 3775-3783, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38717062

ABSTRACT

Unlike naturally derived peptides, computationally designed sequences offer programmed self-assembly and charge display. Herein, new tetrameric, coiled coil-forming peptides were computationally designed ranging from 8 to 29 amino acids in length. Experimental investigations revealed that only the sequences having three or more heptads (i.e., 21 or more amino acids) exhibited coiled coil behavior. The shortest stable coiled coil sequence had a melting temperature (Tm) of approximately 58 ± 1 °C, making it ideal for thermoreversible assembly over moderate temperatures. Effects of pH and monovalent salt were examined, revealing structural stability over a pH range of 4 to 11 and an enhancement in Tm with the addition of salt. The incorporation of the coiled coil as a hydrogel cross-linker results in a thermally and mechanically reversible hydrogel. A subsequent demonstration of the hydrogel printed through a syringe illustrated one of many potential uses from 3D printing to injectable hydrogel drug delivery.


Subject(s)
Hydrogels , Peptides , Peptides/chemistry , Hydrogels/chemistry , Hydrogen-Ion Concentration
5.
Mol Ther ; 31(7): 2005-2013, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37016579

ABSTRACT

Lenadogene nolparvovec (GS010) was developed to treat a point mutation in mitochondrial ND4 that causes Leber hereditary optic neuropathy. GS010 delivers human cDNA encoding wild-type ND4 packaged into an rAAV2/2 vector that transduces retinal ganglion cells, to induce allotopic expression of hybrid mitochondrial ND4. GS010 clinical trials improved best-corrected visual acuity (BCVA) up to 5 years after treatment. Interestingly, unilateral treatment improved BCVA bilaterally. Subsequent studies revealed GS010 DNA in visual tissues contralateral to the injected eye, suggesting migration. Here we tested whether unilateral intraocular pressure (IOP) elevation could influence the transfer of viral ND4 RNA in contralateral tissues after GS010 delivery to the IOP-elevated eye and probed a potential mechanism mediating translocation in mice. We found IOP elevation enhanced viral ND4 RNA transcripts in contralateral visual tissues, including retinas. Using conditional transgenic mice, we depleted astrocytic gap junction connexin 43 (Cx43), required for distant redistribution of metabolic resources between astrocytes during stress. After unilateral IOP elevation and GS010 injection, Cx43 knockdown eradicated ND4 RNA transcript detection in contralateral retinal tissues, while transcript was still detectable in optic nerves. Overall, our study indicates long-range migration of GS010 product to contralateral visual tissues is enhanced by Cx43-linked astrocyte networks.


Subject(s)
Astrocytes , Connexin 43 , Mice , Humans , Animals , Astrocytes/metabolism , Connexin 43/genetics , Connexin 43/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Genetic Vectors , Genetic Therapy , Mice, Transgenic , RNA , DNA, Mitochondrial/genetics
6.
Mol Psychiatry ; 27(8): 3374-3384, 2022 08.
Article in English | MEDLINE | ID: mdl-35697760

ABSTRACT

The ventromedial prefrontal cortex (vmPFC) to nucleus accumbens (NAc) circuit has been implicated in impulsive reward-seeking. This disinhibition has been implicated in obesity and often manifests as binge eating, which is associated with worse treatment outcomes and comorbidities. It remains unclear whether the vmPFC-NAc circuit is perturbed in impulsive eaters with obesity. Initially, we analyzed publicly available, high-resolution, normative imaging data to localize where vmPFC structural connections converged within the NAc. These structural connections were found to converge ventromedially in the presumed NAc shell subregion. We then analyzed multimodal clinical and imaging data to test the a priori hypothesis that the vmPFC-NAc shell circuit is linked to obesity in a sample of female participants that regularly engaged in impulsive eating (i.e., binge eating). Functionally, vmPFC-NAc shell resting-state connectivity was inversely related to body mass index (BMI) and decreased in the obese state. Structurally, vmPFC-NAc shell structural connectivity and vmPFC thickness were inversely correlated with BMI; obese binge-prone participants exhibited decreased vmPFC-NAc structural connectivity and vmPFC thickness. Finally, to examine a causal link to binge eating, we directly probed this circuit in one binge-prone obese female using NAc deep brain stimulation in a first-in-human trial. Direct stimulation of the NAc shell subregion guided by local behaviorally relevant electrophysiology was associated with a decrease in number of weekly episodes of uncontrolled eating and decreased BMI. This study unraveled vmPFC-NAc shell circuit aberrations in obesity that can be modulated to restore control over eating behavior in obesity.


Subject(s)
Nucleus Accumbens , Prefrontal Cortex , Female , Humans , Prefrontal Cortex/physiology , Impulsive Behavior/physiology , Reward , Obesity
7.
Cell Commun Signal ; 21(1): 305, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37904133

ABSTRACT

BACKGROUND: Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology. Our understanding of pathologic intercellular signaling has been bolstered by disease models using neurons derived from human pluripotent stems cells (hPSC). METHODS: Here, we used hPSC-derived retinal ganglion cells (hRGC) and the mouse visual system to investigate the influence of modulating EV generation on intercellular trafficking and cell survival. We probed the impact of EV modulation on cell survival by decreasing the catabolism of sphingomyelin into ceramide through inhibition of neutral sphingomyelinase (nSMase), using GW4869. We assayed for cell survival in vitro by probing for annexin A5, phosphatidylserine, viable mitochondria, and mitochondrial reactive oxygen species. In vivo, we performed intraocular injections of GW4869 and measured RGC and superior colliculus neuron density and RGC anterograde axon transport. RESULTS: Following twenty-four hours of dosing hRGCs with GW4869, we found that inhibition of nSMase decreased ceramide and enhanced GM1 ganglioside accumulation. This inhibition also reduced the density of small EVs, increased the density of large EVs, and enriched the pro-apoptotic protein, annexin A5. Reducing nSMase activity increased hRGC apoptosis initiation due to enhanced density and uptake of apoptotic particles, as identified by the annexin A5 binding phospholipid, phosphatidylserine. We assayed intercellular trafficking of mitochondria by developing a coculture system of GW4869-treated and naïve hRGCs. In treated cells, inhibition of nSMase reduced the number of viable mitochondria, while driving mitochondrial reactive oxygen species not only in treated, but also in naive hRGCs added in coculture. In mice, 20 days following a single intravitreal injection of GW4869, we found a significant loss of RGCs and their axonal recipient neurons in the superior colliculus. This followed a more dramatic reduction in anterograde RGC axon transport to the colliculus. CONCLUSION: Overall, our data suggest that perturbing the physiologic catabolism of sphingomyelin by inhibiting nSMase reorganizes plasma membrane associated sphingolipids, alters the profile of neuron-generated EVs, and promotes neurodegeneration in vitro and in vivo by shifting the balance of pro-survival versus -degenerative EVs. Video Abstract.


Subject(s)
Sphingomyelin Phosphodiesterase , Sphingomyelins , Mice , Animals , Humans , Sphingomyelin Phosphodiesterase/metabolism , Annexin A5 , Reactive Oxygen Species/metabolism , Phosphatidylserines , Ceramides/metabolism , Retinal Ganglion Cells/metabolism
8.
J Neuropsychiatry Clin Neurosci ; 35(4): 333-340, 2023.
Article in English | MEDLINE | ID: mdl-37021384

ABSTRACT

Unprecedented knowledge of the brain is inevitably contributing to the convergence of neurology and psychiatry. However, clinical training continues to follow a divergent approach established in the 19th century. An etiological approach will continue to shift more psychiatric patients to the care of neurologists who are untrained in psychiatric management. At the same time, this new era of diagnostic biomarkers and neuroscience-based precision treatments requires skills not readily available to those trained in psychiatry. The challenges in training the next generation of doctors include establishing competence involving aspects of the whole brain, fostering the subspecialized expertise needed to remain current, and developing programs that are feasible in duration and practical in implementation. A new 4-year residency training program proposed in this article could replace existing residency programs. The program includes 2 years of common and urgent training in various aspects of neurology and psychiatry followed by 2 years of elective subspecialty tracks. The concept is similar to internal medicine residencies and fellowships. No changes to existing departmental structures are necessary. In concert with the emerging biological approach to the brain, "brain medicine" is proposed as a new name to denote this practice in the simplest terms: a focus on all aspects of the brain.

9.
Qual Life Res ; 32(9): 2425-2434, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37004629

ABSTRACT

INTRODUCTION: There is an historical initiative to establish common theoretical ground to support a framework for assessing health-related quality of life (HRQL). Our aim was to add to this effort with an analysis of theoretical/philosophical themes embedded in HRQL questionnaires and patient reports. METHODS AND RESULTS: We reviewed recent developments in HRQL assessment. This included analyzing a representative sample of psychometric measures of HRQL to schematically summarize core theoretical/philosophical themes that are embedded in questionnaire items. This analysis indicated a state-based framework for HRQL that was characterized by themes of hedonic and eudaimonic well-being, and desire-satisfaction. In contrast, a review of patient reports of HRQL indicated a process-based framework where goal-directed activities aimed to secure aspirational life goals while striving to accept the reality of declining health. Given this difference in HRQL themes we used a meta-philosophical approach, based on Hadot's idea of philosophy as a way of living, to identify a process-based theoretical framework for HRQL assessment that addressed patient-reported themes. The Stoic modification of eudaimonic well-being was examined where HRQL and well-being are viewed as a process (vs. state) aimed at transforming the experience of loss or grief in response to adversity through goal-directed activities/exercises (euroia biou, good flow in life). We then introduced a complementary research agenda for HRQL assessment that incorporates self-reported, goal-directed activities that are initiated or maintained to promote HRQL. CONCLUSION: A process-based approach to HRQL assessment may increase the spectrum of clinically relevant features that currently comprise operational measures of this patient-reported appraisal.


Subject(s)
Motivation , Quality of Life , Humans , Quality of Life/psychology , Surveys and Questionnaires , Self Report , Personal Satisfaction
10.
J Environ Manage ; 343: 118171, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37245307

ABSTRACT

Extreme fire events have increased across south-eastern Australia owing to warmer and drier conditions driven by anthropogenic climate change. Fuel reduction burning is widely applied to reduce the occurrence and severity of wildfires; however, targeted assessment of the effectiveness of this practice is limited, especially under extreme climatic conditions. Our study utilises fire severity atlases for fuel reduction burns and wildfires to examine: (i) patterns in the extent of fuel treatment within planned burns (i.e., burn coverage) across different fire management zones, and; (ii) the effect of fuel reduction burning on the severity of wildfires under extreme climatic conditions. We assessed the effect of fuel reduction burning on wildfire severity across temporal and spatial scales (i.e., point and local landscape), while accounting for burn coverage and fire weather. Fuel reduction burn coverage was substantially lower (∼20-30%) than desired targets in fuel management zones focused on asset protection, but within the desired range in zones that focus on ecological objectives. At the point scale, wildfire severity was moderated in treated areas for at least 2-3 years after fuel treatment in shrubland and 3-5 years in forests, relative to areas that did not receive fuel reduction treatments (i.e., unburnt patches). Fuel availability strongly limited fire occurrence and severity within the first 18 months of fuel reduction burning, irrespective of fire weather. Fire weather was the dominant driver of high severity canopy defoliating fire by ∼3-5 years after fuel treatment. At the local landscape scale (i.e., 250 ha), the extent of high canopy scorch decreased marginally as the extent of recently (<5 years) treated fuels increased, though there was a high level of uncertainty around the effect of recent fuel treatment. Our findings demonstrate that during extreme fire events, very recent (i.e., <3 years) fuel reduction burning can aid wildfire suppression locally (i.e., near assets) but will have a highly variable effect on the extent and severity of wildfires at larger scales. The patchy coverage of fuel reduction burns in the wildland-urban interface indicates that considerable residual fuel hazard will often be present within the bounds of fuel reduction burns.


Subject(s)
Burns , Fires , Wildfires , Humans , Forests , Australia
11.
Mol Vis ; 28: 165-177, 2022.
Article in English | MEDLINE | ID: mdl-36274816

ABSTRACT

Purpose: Glaucoma is a neurodegenerative disease associated with elevated intraocular pressure and characterized by optic nerve axonal degeneration, cupping of the optic disc, and loss of retinal ganglion cells (RGCs). The endothelin (ET) system of vasoactive peptides (ET-1, ET-2, ET-3) and their G-protein coupled receptors (ETA and ETB receptors) have been shown to contribute to the pathophysiology of glaucoma. The purpose of this study was to determine whether administration of the endothelin receptor antagonist macitentan was neuroprotective to RGCs and optic nerve axons when administered after the onset of intraocular pressure (IOP) elevation in ocular hypertensive rats. Methods: Male and female Brown Norway rats were subjected to the Morrison model of ocular hypertension by injection of hypertonic saline through the episcleral veins. Following IOP elevation, macitentan (5 mg/kg body wt) was administered orally 3 days per week, and rats with IOP elevation were maintained for 4 weeks. RGC function was determined by pattern electroretinography (PERG) at 2 and 4 weeks post-IOP elevation. Rats were euthanized by approved humane methods, and retinal flat mounts were generated and immunostained for the RGC-selective marker Brn3a. PPD-stained optic nerve sections were imaged by confocal microscopy. RGC and axon counts were conducted in a masked manner and compared between the treatment groups. Results: Significant protection against loss of RGCs and optic nerve axons was found following oral administration of macitentan in rats with elevated IOP. In addition, a protective trend for RGC function, as measured by pattern ERG analysis, was evident following macitentan treatment. Conclusions: Macitentan treatment had a neuroprotective effect on RGCs and their axons, independent of its IOP-lowering effect, suggesting that macitentan may complement existing treatments to prevent neurodegeneration during ocular hypertension. The findings presented have implications for the use of macitentan as an oral formulation to promote neuroprotection in glaucoma patients.


Subject(s)
Glaucoma , Neurodegenerative Diseases , Neuroprotective Agents , Ocular Hypertension , Male , Female , Rats , Animals , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rodentia , Endothelin Receptor Antagonists/pharmacology , Disease Models, Animal , Glaucoma/complications , Glaucoma/drug therapy , Intraocular Pressure , Ocular Hypertension/complications , Ocular Hypertension/drug therapy , Rats, Inbred BN , Axons , Endothelins/pharmacology , Administration, Oral , Peptides/pharmacology
12.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35328332

ABSTRACT

Vision loss through the degeneration of retinal ganglion cell (RGC) axons occurs in both chronic and acute conditions that target the optic nerve. These include glaucoma, in which sensitivity to intraocular pressure (IOP) causes early RGC axonal dysfunction, and optic nerve trauma, which causes rapid axon degeneration from the site of injury. In each case, degeneration is irreversible, necessitating new therapeutics that protect, repair, and regenerate RGC axons. Recently, we demonstrated the reparative capacity of using collagen mimetic peptides (CMPs) to heal fragmented collagen in the neuronal extracellular milieu. This was an important step in the development of neuronal-based therapies since neurodegeneration involves matrix metalloproteinase (MMP)-mediated remodeling of the collagen-rich environment in which neurons and their axons exist. We found that intraocular delivery of a CMP comprising single-strand fractions of triple helix human type I collagen prevented early RGC axon dysfunction in an inducible glaucoma model. Additionally, CMPs also promoted neurite outgrowth from dorsal root ganglia, challenged in vitro by partial digestion of collagen. Here, we compared the ability of a CMP sequence to protect RGC axons in both inducible glaucoma and optic nerve crush. A three-week +40% elevation in IOP caused a 67% degradation in anterograde transport to the superior colliculus, the primary retinal projection target in rodents. We found that a single intravitreal injection of CMP during the period of IOP elevation significantly reduced this degradation. The same CMP delivered shortly after optic nerve crush promoted significant axonal recovery during the two-week period following injury. Together, these findings support a novel protective and reparative role for the use of CMPs in both chronic and acute conditions affecting the survival of RGC axons in the optic projection to the brain.


Subject(s)
Glaucoma , Retinal Ganglion Cells , Animals , Axons/metabolism , Collagen/metabolism , Disease Models, Animal , Glaucoma/metabolism , Intraocular Pressure , Peptides/metabolism , Retinal Ganglion Cells/metabolism
13.
Chembiochem ; 22(7): 1122-1150, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33185924

ABSTRACT

Bacterial modular type I polyketide synthases (PKSs) are complex multidomain assembly line proteins that produce a range of pharmaceutically relevant molecules with a high degree of stereochemical control. Due to their colinear properties, they have been considerable targets for rational biosynthetic pathway engineering. Among the domains harbored within these complex assembly lines, ketoreductase (KR) domains have been extensively studied with the goal of altering their stereoselectivity by site-directed mutagenesis, as they confer much of the stereochemical complexity present in pharmaceutically active reduced polyketide scaffolds. Here we review all efforts to date to perform site-directed mutagenesis on PKS KRs, most of which have been done in the context of excised KR domains on model diffusible substrates such as ß-keto N-acetyl cysteamine thioesters. We also discuss the challenges around translating the findings of these studies to alter stereocontrol in the context of a complex multidomain enzymatic assembly line.


Subject(s)
Bacterial Proteins/metabolism , Polyketide Synthases/metabolism , Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Kinetics , Mutagenesis, Site-Directed , NADP/chemistry , NADP/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketides/chemistry , Polyketides/metabolism , Protein Domains , Substrate Specificity
14.
Conscious Cogn ; 96: 103221, 2021 11.
Article in English | MEDLINE | ID: mdl-34695719

ABSTRACT

Hypnosis is associated with alterations in the sense of agency which can play a role in its utilization as a nonpharmacological option for pain management. The goal of the current study was to examine the relationships between responsiveness to suggestions in hypnosis and alterations of the sense of agency among patients with fibromyalgia. Ninety-eight participants with fibromyalgia underwent two hypnotizability assessments followed by the Sense of Agency Rating Scale. Clinical pain measures were also collected. Involuntariness was predicted by responsiveness to control, ideomotor, and dissociation suggestions. Effortlessness was predicted by responsiveness to control and ideomotor suggestions, and age. Hypnotizability was associated with main clinical pain outcomes, but agency alterations were not. Results suggest a shared mechanism between responsiveness to specific suggestions and the sense of agency in hypnosis. We discuss theoretical and clinical implications for pain management and the need for further research.


Subject(s)
Fibromyalgia , Hypnosis , Fibromyalgia/therapy , Humans , Hypnosis/methods , Hypnotics and Sedatives , Pain Management , Suggestion
15.
BMC Public Health ; 21(1): 2307, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930193

ABSTRACT

BACKGROUND: Effective syndromic surveillance alongside COVID-19 testing behaviours in the population including in higher risk and hard to reach subgroups is vital to detect re-emergence of COVID-19 transmission in the community. The aim of this paper was to identify the prevalence of acute respiratory infection symptoms and coronavirus testing behaviour among South Australians using data from a population based survey. METHODS: We used cross-sectional data from the 2020 state-wide population level health survey on 6857 respondents aged 18 years and above. Descriptive statistics were used to explore the risk factors and multivariable logistic regression models were used to assess the factors associated with the acute respiratory infection symptoms and coronavirus testing behaviour after adjusting for gender, age, household size, household income, Aboriginal and/or Torres Strait Islander status, SEIFA, Country of birth, number of chronic diseases, wellbeing, psychological distress, and mental health. RESULTS: We found that 19.3% of respondents reported having symptoms of acute respiratory infection and the most commonly reported symptoms were a runny nose (11.2%), coughing (9.9%) and sore throat (6.2%). Fever and cough were reported by 0.8% of participants. Of the symptomatic respondents, 32.6% reported seeking health advice from a nurse, doctor or healthcare provider. Around 18% (n = 130) of symptomatic respondents had sought testing and a further 4.3% (n = 31) reported they intended to get tested. The regression results suggest that older age, larger household size, a higher number of chronic disease, mental health condition, poor wellbeing, and psychological distress were associated with higher odds of ARI symptoms. Higher household income was associated with lower odds of being tested or intending to be tested for coronavirus after adjusting for other explanatory variables. CONCLUSIONS: There were relatively high rates of self-reported acute respiratory infection during a period of very low COVID-19 prevalence and low rate of coronavirus testing among symptomatic respondents. Ongoing monitoring of testing uptake, including in higher-risk groups, and possible interventions to improve testing uptake is key to early detection of disease.


Subject(s)
COVID-19 Testing , COVID-19 , Aged , Australia/epidemiology , Cross-Sectional Studies , Health Surveys , Humans , SARS-CoV-2 , South Australia/epidemiology
16.
Proc Natl Acad Sci U S A ; 115(1): 192-197, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29255043

ABSTRACT

Reward hypersensitization is a common feature of neuropsychiatric disorders, manifesting as impulsivity for anticipated incentives. Temporally specific changes in activity within the nucleus accumbens (NAc), which occur during anticipatory periods preceding consummatory behavior, represent a critical opportunity for intervention. However, no available therapy is capable of automatically sensing and therapeutically responding to this vulnerable moment in time when anticipation-related neural signals may be present. To identify translatable biomarkers for an off-the-shelf responsive neurostimulation system, we record local field potentials from the NAc of mice and a human anticipating conventional rewards. We find increased power in 1- to 4-Hz oscillations predominate during reward anticipation, which can effectively trigger neurostimulation that reduces consummatory behavior in mice sensitized to highly palatable food. Similar oscillations are present in human NAc during reward anticipation, highlighting the translational potential of our findings in the development of a treatment for a major unmet need.


Subject(s)
Consummatory Behavior/physiology , Delta Rhythm/physiology , Nucleus Accumbens/physiology , Animals , Female , Humans , Male , Mice
17.
Exp Eye Res ; 190: 107873, 2020 01.
Article in English | MEDLINE | ID: mdl-31734278

ABSTRACT

Glaucoma is an age-related neurodegenerative disease that is commonly associated with sensitivity to intraocular pressure. The disease selectively targets retinal ganglion cells (RGCs) and constituent axons. RGC axons are rich in voltage-gated sodium channels, which are essential for action potential initiation and regeneration. Here, we identified voltage-dependent sodium channel, NaV1.2, in the retina, examined how this channel contributes to RGC light responses, and monitored NaV1.2 mRNA and protein expression in the retina during progression of modeled glaucoma. We found NaV1.2 is predominately localized in ganglion cell intraretinal axons with dispersed expression in the outer and inner plexiform layers. We showed Phrixotoxin-3, a potent NaV1.2 channel blocker, significantly decreased RGC electrical activity in a dose-dependent manner with an IC50 of 40 nM. Finally, we found four weeks of raised intraocular pressure (30% above baseline) significantly increased NaV1.2 mRNA expression but reduced NaV1.2 protein level in the retina up to 57% (p < 0.001). Following prolonged intraocular pressure elevation, NaV1.2 protein expression particularly diminished at distal sections of ganglion cell intraretinal axons (p ≤ 0.01). Our results suggest NaV1.2 might be a therapeutic target during disease progression to maintain RGC excitability, preserving presynaptic connections through action potential backpropagation.


Subject(s)
Axons/metabolism , Intraocular Pressure/physiology , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Ocular Hypertension/metabolism , Retinal Ganglion Cells/metabolism , Animals , Gene Expression Regulation/physiology , Male , Mice, Inbred C57BL , NAV1.2 Voltage-Gated Sodium Channel/genetics , RNA, Messenger/genetics , Tonometry, Ocular
18.
Mol Psychiatry ; 24(12): 1779-1786, 2019 12.
Article in English | MEDLINE | ID: mdl-31467392

ABSTRACT

We recently reported that naltrexone blocks antidepressant effects of ketamine in humans, indicating that antidepressant effects of ketamine require opioid receptor activation. However, it is unknown if opioid receptors are also involved in ketamine's antisuicidality effects. Here, in a secondary analysis of our recent clinical trial, we test whether naltrexone attenuates antisuicidality effects of ketamine. Participants were pretreated with naltrexone or placebo prior to intravenous ketamine in a double-blinded crossover design. Suicidality was measured with the Hamilton Depression Rating Scale item 3, Montgomery-Åsberg Depression Rating Scale item 10, and Columbia Suicide Severity Rating Scale. In the 12 participants who completed naltrexone and placebo conditions, naltrexone attenuated the antisuicidality effects of ketamine on all three suicidality scales/subscales (linear mixed model, fixed pretreatment effect, p < 0.01). Results indicate that opioid receptor activation plays a significant role in the antisuicidality effects of ketamine.


Subject(s)
Ketamine/therapeutic use , Narcotic Antagonists/metabolism , Receptors, Opioid/metabolism , Adult , Antidepressive Agents/therapeutic use , Cross-Over Studies , Depressive Disorder, Treatment-Resistant/drug therapy , Double-Blind Method , Excitatory Amino Acid Antagonists/therapeutic use , Female , Humans , Ketamine/metabolism , Male , Middle Aged , Naltrexone/pharmacology , Psychiatric Status Rating Scales , Suicidal Ideation , Suicide/psychology , Treatment Outcome
19.
Horm Metab Res ; 52(8): 607-613, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32791542

ABSTRACT

Lack of routine fresh or frozen tissue is a barrier to widespread transcriptomic analysis of adrenal cortical tumors and an impediment to translational research in endocrinology and endocrine oncology. Our group has previously pioneered the use of targeted amplicon-based next-generation sequencing for archival formalin-fixed paraffin-embedded (FFPE) adrenal tissue specimens to characterize the spectrum of somatic mutations in various forms of primary aldosteronism. Herein, we developed and validated a novel 194-amplicon targeted next-generation RNA sequencing (RNAseq) assay for transcriptomic analysis of adrenal tumors using clinical-grade FFPE specimens. Targeted RNAseq-derived expression values for 27 adrenal cortical tumors, including aldosterone-producing adenomas (APA; n=8), cortisol-producing adenomas (CPA; n=11), and adrenal cortical carcinomas (ACC; n=8), highlighted known differentially-expressed genes (DEGs; i. e., CYP11B2, IGF2, etc.) and tumor type-specific transcriptional modules (i. e., high cell cycle/proliferation transcript expression in ACC, etc.), and a subset of DEGs was validated orthogonally using quantitative reverse transcription PCR (qRT-PCR). Finally, unsupervised hierarchical clustering using a subset of high-confidence DEGs revealed three discrete clusters representing APA, CPA, and ACC tumors with corresponding unique gene expression signatures, suggesting potential clinical utility for a transcriptomic-based approach to tumor classification. Overall, these data support the use of targeted amplicon-based RNAseq for comprehensive transcriptomic profiling of archival FFPE adrenal tumor material and indicate that this approach may facilitate important translational research opportunities for the study of these tumors.


Subject(s)
Adrenal Cortex Neoplasms/classification , Adrenal Cortex Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Paraffin Embedding/methods , RNA-Seq/methods , Transcriptome , Adrenal Cortex Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Diagnosis, Differential , Female , Follow-Up Studies , Formaldehyde/chemistry , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prognosis
20.
Stereotact Funct Neurosurg ; 98(4): 270-277, 2020.
Article in English | MEDLINE | ID: mdl-32434201

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) has emerged as a safe and effective therapy for refractory Tourette syndrome (TS). Recent studies have identified several neural targets as effective in reducing TS symptoms with DBS, but, to our knowledge, none has compared the effectiveness of DBS with conservative therapy. METHODS: A literature review was performed to identify studies investigating adult patient outcomes reported as Yale Global Tic Severity Scale (YGTSS) scores after DBS surgery, pharmacotherapy, and psychotherapy. Data were pooled using a random-effects model of inverse variance-weighted meta-analysis (n = 168 for DBS, n = 131 for medications, and n = 154 for behavioral therapy). RESULTS: DBS resulted in a significantly greater reduction in YGTSS total score (49.9 ± 17.5%) than pharmacotherapy (22.5 ± 15.2%, p = 0.001) or psychotherapy (20.0 ± 11.3%, p < 0.001), with a complication (adverse effect) rate of 0.15/case, 1.13/case, and 0.60/case, respectively. CONCLUSION: Our data suggest that adult patients with refractory TS undergoing DBS experience greater symptomatic improvement with surprisingly low morbidity than can be obtained with pharmacotherapy or psychotherapy.


Subject(s)
Conservative Treatment/methods , Deep Brain Stimulation/methods , Tourette Syndrome/diagnostic imaging , Tourette Syndrome/therapy , Clinical Trials as Topic/methods , Conservative Treatment/trends , Deep Brain Stimulation/trends , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL