Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868206

ABSTRACT

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Subject(s)
Genomics , Health Policy , Humans , Australia , Rare Diseases , Delivery of Health Care
2.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332611

ABSTRACT

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Subject(s)
Databases, Genetic , Laboratories , Humans , Genetic Variation , Australia , Genetic Testing
3.
Nature ; 543(7643): 65-71, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28199314

ABSTRACT

The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Genome, Human/genetics , Genomics , Pancreatic Neoplasms/genetics , Base Sequence , Calmodulin-Binding Proteins/genetics , Chromatin Assembly and Disassembly/genetics , Chromosome Aberrations , DNA Copy Number Variations/genetics , DNA Glycosylases/genetics , DNA Mutational Analysis , DNA Repair/genetics , Female , Germ-Line Mutation/genetics , Humans , Male , RNA-Binding Protein EWS , RNA-Binding Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Telomere/genetics , Telomere/metabolism
5.
Nature ; 545(7653): 175-180, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28467829

ABSTRACT

Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. Here we report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequences was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. Most melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.


Subject(s)
Genome, Human/genetics , Melanoma/genetics , Mutation/genetics , DNA Helicases/genetics , GTP Phosphohydrolases/genetics , Genes, p16 , Humans , Melanoma/classification , Membrane Proteins/genetics , Mitogen-Activated Protein Kinases/genetics , Neurofibromatosis 1/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Proto-Oncogene Proteins B-raf/genetics , RNA Splicing Factors/genetics , Signal Transduction/drug effects , Telomerase/genetics , Telomere/genetics , Tumor Suppressor Protein p53/genetics , Ultraviolet Rays/adverse effects , X-linked Nuclear Protein
6.
Lung ; 201(4): 407-413, 2023 08.
Article in English | MEDLINE | ID: mdl-37405466

ABSTRACT

INTRODUCTION: Maximising alternative sample types for genomics in advanced lung cancer is important because bronchoscopic samples may sometimes be insufficient for this purpose. Further, the clinical applications of comprehensive molecular analysis such as whole genome sequencing (WGS) are rapidly developing. Diff-Quik cytology smears from EBUS TBNA is an alternative source of DNA, but its feasibility for WGS has not been previously demonstrated. METHODS: Diff-Quik smears were collected along with research cell pellets. RESULTS: Tumour content of smears were compared to research cell pellets from 42 patients, which showed good correlation (Spearman correlation 0.85, P < 0.0001). A subset of eight smears underwent WGS, which presented similar mutation profiles to WGS of the matched cell pellet. DNA yield was predicted using a regression equation of the smears cytology features, which correctly predicted DNA yield > 1500 ng in 7 out of 8 smears. CONCLUSIONS: WGS of commonly collected Diff-Quik slides is feasible and their DNA yield can be predicted.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biopsy, Fine-Needle , Endosonography , Whole Genome Sequencing , Endoscopic Ultrasound-Guided Fine Needle Aspiration , Bronchoscopy , Lymph Nodes/pathology
7.
BMC Cancer ; 22(1): 85, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057759

ABSTRACT

BACKGROUND: Circulating cell-free DNA (cfDNA) in the plasma of cancer patients contains cell-free tumour DNA (ctDNA) derived from tumour cells and it has been widely recognized as a non-invasive source of tumour DNA for diagnosis and prognosis of cancer. Molecular profiling of ctDNA is often performed using targeted sequencing or low-coverage whole genome sequencing (WGS) to identify tumour specific somatic mutations or somatic copy number aberrations (sCNAs). However, these approaches cannot efficiently detect all tumour-derived genomic changes in ctDNA. METHODS: We performed WGS analysis of cfDNA from 4 breast cancer patients and 2 patients with benign tumours. We sequenced matched germline DNA for all 6 patients and tumour samples from the breast cancer patients. All samples were sequenced on Illumina HiSeqXTen sequencing platform and achieved approximately 30x, 60x and 100x coverage on germline, tumour and plasma DNA samples, respectively. RESULTS: The mutational burden of the plasma samples (1.44 somatic mutations/Mb of genome) was higher than the matched tumour samples. However, 90% of high confidence somatic cfDNA variants were not detected in matched tumour samples and were found to comprise two background plasma mutational signatures. In contrast, cfDNA from the di-nucleosome fraction (300 bp-350 bp) had much higher proportion (30%) of variants shared with tumour. Despite high coverage sequencing we were unable to detect sCNAs in plasma samples. CONCLUSIONS: Deep sequencing analysis of plasma samples revealed higher fraction of unique somatic mutations in plasma samples, which were not detected in matched tumour samples. Sequencing of di-nucleosome bound cfDNA fragments may increase recovery of tumour mutations from plasma.


Subject(s)
Breast Neoplasms/genetics , Circulating Tumor DNA/blood , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods , Adult , Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Female , Humans , Mutation , Prognosis
8.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26909576

ABSTRACT

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Subject(s)
Genes, Neoplasm/genetics , Genome, Human/genetics , Genomics , Mutation/genetics , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Pancreatic Ductal/classification , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DNA Methylation , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-gamma/genetics , Histone Demethylases/genetics , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , Humans , Mice , Nuclear Proteins/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Receptors, Cytoplasmic and Nuclear/genetics , Survival Analysis , Trans-Activators/genetics , Transcription Factors/genetics , Transcription, Genetic , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Zebrafish Proteins
9.
Nature ; 521(7553): 489-94, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26017449

ABSTRACT

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Genome, Human/genetics , Ovarian Neoplasms/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Cohort Studies , Cyclin E/genetics , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , DNA Methylation , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Genes, Neurofibromatosis 1 , Germ-Line Mutation/genetics , Humans , Mutagenesis/genetics , Oncogene Proteins/genetics , Ovarian Neoplasms/drug therapy , PTEN Phosphohydrolase/genetics , Promoter Regions, Genetic/genetics , Retinoblastoma Protein/genetics
10.
Nature ; 518(7540): 495-501, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25719666

ABSTRACT

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Genomics , Mutation/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , DNA Repair/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Genetic Markers/genetics , Genomic Instability/genetics , Genotype , Humans , Mice , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/drug therapy , Platinum/pharmacology , Point Mutation/genetics , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays
11.
J Pathol ; 247(2): 214-227, 2019 02.
Article in English | MEDLINE | ID: mdl-30350370

ABSTRACT

Metaplastic breast carcinoma (MBC) is relatively rare but accounts for a significant proportion of global breast cancer mortality. This group is extremely heterogeneous and by definition exhibits metaplastic change to squamous and/or mesenchymal elements, including spindle, squamous, chondroid, osseous, and rhabdomyoid features. Clinically, patients are more likely to present with large primary tumours (higher stage), distant metastases, and overall, have shorter 5-year survival compared to invasive carcinomas of no special type. The current World Health Organisation (WHO) diagnostic classification for this cancer type is based purely on morphology - the biological basis and clinical relevance of its seven sub-categories are currently unclear. By establishing the Asia-Pacific MBC (AP-MBC) Consortium, we amassed a large series of MBCs (n = 347) and analysed the mutation profile of a subset, expression of 14 breast cancer biomarkers, and clinicopathological correlates, contextualising our findings within the WHO guidelines. The most significant indicators of poor prognosis were large tumour size (T3; p = 0.004), loss of cytokeratin expression (lack of staining with pan-cytokeratin AE1/3 antibody; p = 0.007), EGFR overexpression (p = 0.01), and for 'mixed' MBC, the presence of more than three distinct morphological entities (p = 0.007). Conversely, fewer morphological components and EGFR negativity were favourable indicators. Exome sequencing of 30 cases confirmed enrichment of TP53 and PTEN mutations, and intriguingly, concurrent mutations of TP53, PTEN, and PIK3CA. Mutations in neurofibromatosis-1 (NF1) were also overrepresented [16.7% MBCs compared to ∼5% of breast cancers overall; enrichment p = 0.028; mutation significance p = 0.006 (OncodriveFM)], consistent with published case reports implicating germline NF1 mutations in MBC risk. Taken together, we propose a practically minor but clinically significant modification to the guidelines: all WHO_1 mixed-type tumours should have the number of morphologies present recorded, as a mechanism for refining prognosis, and that EGFR and pan-cytokeratin expression are important prognostic markers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Mutation , Neoplasms, Complex and Mixed/genetics , Antigens, CD/analysis , Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Breast Neoplasms/classification , Breast Neoplasms/pathology , Cadherins/analysis , Class I Phosphatidylinositol 3-Kinases/genetics , Cross-Sectional Studies , Epithelial-Mesenchymal Transition , ErbB Receptors/analysis , Female , Genetic Predisposition to Disease , Humans , Keratins/analysis , Metaplasia , Middle Aged , Neoplasm Grading , Neoplasms, Complex and Mixed/chemistry , Neoplasms, Complex and Mixed/classification , Neoplasms, Complex and Mixed/pathology , Neurofibromin 1/genetics , PTEN Phosphohydrolase/genetics , Phenotype , Tumor Burden , Tumor Suppressor Protein p53/genetics
12.
Nucleic Acids Res ; 46(10): 4903-4918, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29718321

ABSTRACT

The replicative immortality of human cancer cells is achieved by activation of a telomere maintenance mechanism (TMM). To achieve this, cancer cells utilise either the enzyme telomerase, or the Alternative Lengthening of Telomeres (ALT) pathway. These distinct molecular pathways are incompletely understood with respect to activation and propagation, as well as their associations with clinical outcomes. We have identified significant differences in the telomere repeat composition of tumours that use ALT compared to tumours that do not. We then employed a machine learning approach to stratify tumours according to telomere repeat content with an accuracy of 91.6%. Importantly, this classification approach is applicable across all tumour types. Analysis of pathway mutations that were under-represented in ALT tumours, across 1,075 tumour samples, revealed that the autophagy, cell cycle control of chromosomal replication, and transcriptional regulatory network in embryonic stem cells pathways are involved in the survival of ALT tumours. Overall, our approach demonstrates that telomere sequence content can be used to stratify ALT activity in cancers, and begin to define the molecular pathways involved in ALT activation.


Subject(s)
Computational Biology/methods , Neoplasms/genetics , Telomere Homeostasis/genetics , Telomere/genetics , Adaptor Proteins, Signal Transducing/genetics , Co-Repressor Proteins , Databases, Genetic , Female , Humans , Machine Learning , Melanoma/genetics , Melanoma/mortality , Molecular Chaperones , Mutation , Neoplasms/mortality , Nuclear Proteins/genetics , Promoter Regions, Genetic , Survival Analysis , Telomerase/genetics , Exome Sequencing , X-linked Nuclear Protein/genetics
13.
BMC Health Serv Res ; 20(1): 492, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493298

ABSTRACT

BACKGROUND: Despite the rapid uptake of genomic technologies within cancer care, few studies provide detailed information on the costs of sequencing across different applications. The objective of the study was to examine and categorise the complete costs involved in genomic sequencing for a range of applications within cancer settings. METHODS: We performed a cost-analysis using gross and micro-costing approaches for genomic sequencing performed during 2017/2018 across different settings in Brisbane, Australia. Sequencing was undertaken for patients with lung, breast, oesophageal cancers, melanoma or mesothelioma. Aggregated resource data were captured for a total of 1433 patients and point estimates of per patient costs were generated. Deterministic sensitivity analyses addressed the uncertainty in the estimates. Estimated costs to the public health system for resources were categorised into seven distinct activities in the sequencing process: sampling, extraction, library preparation, sequencing, analysis, data storage and clinical reporting. Costs were also aggregated according to labour, consumables, testing, equipment and 'other' categories. RESULTS: The per person costs were AU$347-429 (2018 US$240-297) for targeted panels, AU$871-$2788 (2018 US$604-1932) for exome sequencing, and AU$2895-4830 (2018 US$2006-3347) for whole genome sequencing. Cost proportions were highest for library preparation/sequencing materials (average 76.8% of total costs), sample extraction (8.1%), data analysis (9.2%) and data storage (2.6%). Capital costs for the sequencers were an additional AU$34-197 (2018 US$24-67) per person. CONCLUSIONS: Total costs were most sensitive to consumables and sequencing activities driven by commercial prices. Per person sequencing costs for cancer are high when tumour/blood pairs require testing. Using the natural steps involved in sequencing and categorising resources accordingly, future evaluations of costs or cost-effectiveness of clinical genomics across cancer projects could be more standardised and facilitate easier comparison of cost drivers.


Subject(s)
Costs and Cost Analysis , Genomics/economics , Neoplasms/prevention & control , Australia , Humans , Neoplasms/genetics
14.
Int J Cancer ; 144(5): 1049-1060, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30178487

ABSTRACT

Cutaneous melanoma accounts for at least >10% of all cancers in adolescents and young adults (AYA, 15-30 years of age) in Western countries. To date, little is known about the correlations between germline variants and somatic mutations and mutation signatures in AYA melanoma patients that might explain why they have developed a cancer predominantly affecting those over 65 years of age. We performed genomic analysis of 50 AYA melanoma patients (onset 10-30 years, median 20); 25 underwent whole genome sequencing (WGS) of both tumor and germline DNA, exome data were retrieved from 12 TCGA AYA cases, and targeted DNA sequencing was conducted on 13 cases. The AYA cases were compared with WGS data from 121 adult cutaneous melanomas. Similar to mature adult cutaneous melanomas, AYA melanomas showed a high mutation burden and mutation signatures of ultraviolet radiation (UVR) damage. The frequencies of somatic mutations in BRAF (96%) and PTEN (36%) in the AYA WGS cohort were double the rates observed in adult melanomas (Q < 6.0 × 10-6 and 0.028, respectively). Furthermore, AYA melanomas contained a higher proportion of non-UVR-related mutation signatures than mature adult melanomas as a proportion of total mutation burden (p = 2.0 × 10-4 ). Interestingly, these non-UVR mutation signatures relate to APOBEC or mismatch repair pathways, and germline variants in related genes were observed in some of these cases. We conclude that AYA melanomas harbor some of the same molecular aberrations and mutagenic insults occurring in older adults, but in different proportions. Germline variants that may have conferred disease susceptibility correlated with somatic mutation signatures in a subset of AYA melanomas.


Subject(s)
Genetic Predisposition to Disease/genetics , Germ Cells/physiology , Melanoma/genetics , Mutation/genetics , Adolescent , Adult , Cohort Studies , Female , Humans , Male , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins B-raf/genetics , Whole Genome Sequencing/methods , Young Adult
15.
Am J Hum Genet ; 98(5): 830-842, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27087319

ABSTRACT

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.


Subject(s)
Adenocarcinoma/genetics , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli/genetics , Adenomatous Polyps/genetics , Exons/genetics , Point Mutation/genetics , Stomach Neoplasms/genetics , Allelic Imbalance/genetics , DNA Copy Number Variations/genetics , Exome/genetics , Female , Gastric Mucosa/metabolism , Genetic Linkage/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Loss of Heterozygosity , Male , Pedigree , Promoter Regions, Genetic/genetics
16.
J Pathol ; 244(4): 460-468, 2018 04.
Article in English | MEDLINE | ID: mdl-29344954

ABSTRACT

Mixed ductal-lobular carcinomas (MDLs) show both ductal and lobular morphology, and constitute an archetypal example of intratumoural morphological heterogeneity. The mechanisms underlying the coexistence of these different morphological entities are poorly understood, although theories include that these components either represent 'collision' of independent tumours or evolve from a common ancestor. We performed comprehensive clinicopathological analysis of a cohort of 82 MDLs, and found that: (1) MDLs more frequently coexist with ductal carcinoma in situ (DCIS) than with lobular carcinoma in situ (LCIS); (2) the E-cadherin-catenin complex was normal in the ductal component in 77.6% of tumours; and (3) in the lobular component, E-cadherin was almost always aberrantly located in the cytoplasm, in contrast to invasive lobular carcinoma (ILC), where E-cadherin is typically absent. Comparative genomic hybridization and multiregion whole exome sequencing of four representative cases revealed that all morphologically distinct components within an individual case were clonally related. The mutations identified varied between cases; those associated with a common clonal ancestry included BRCA2, TBX3, and TP53, whereas those associated with clonal divergence included CDH1 and ESR1. Together, these data support a model in which separate morphological components of MDLs arise from a common ancestor, and lobular morphology can arise via a ductal pathway of tumour progression. In MDLs that present with LCIS and DCIS, the clonal divergence probably occurs early, and is frequently associated with complete loss of E-cadherin expression, as in ILC, whereas, in the majority of MDLs, which present with DCIS but not LCIS, direct clonal divergence from the ductal to the lobular phenotype occurs late in tumour evolution, and is associated with aberrant expression of E-cadherin. The mechanisms driving the phenotypic change may involve E-cadherin-catenin complex deregulation, but are yet to be fully elucidated, as there is significant intertumoural heterogeneity, and each case may have a unique molecular mechanism. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Carcinoma In Situ/pathology , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Neoplasms, Complex and Mixed/pathology , Adult , Aged , Aged, 80 and over , Antigens, CD/analysis , Antigens, CD/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Breast Carcinoma In Situ/chemistry , Breast Carcinoma In Situ/genetics , Breast Neoplasms/chemistry , Breast Neoplasms/genetics , Cadherins/analysis , Cadherins/genetics , Carcinoma, Intraductal, Noninfiltrating/chemistry , Carcinoma, Intraductal, Noninfiltrating/genetics , Comparative Genomic Hybridization , DNA Mutational Analysis , Disease Progression , Female , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Middle Aged , Mutation , Neoplasms, Complex and Mixed/chemistry , Neoplasms, Complex and Mixed/genetics , Phenotype , Exome Sequencing
17.
Respiration ; 97(6): 525-539, 2019.
Article in English | MEDLINE | ID: mdl-30731462

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) in lung cancer specimens from endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is usually performed on formalin-fixed paraffin-embedded cell block material. OBJECTIVES: Since DNA can be damaged by this process, we investigated the potential of using DNA extracted from Diff-Quik cytology smears made for rapid on-site evaluation during EBUS-TBNA. METHODS: In a prospective study, 67 patients undergoing diagnostic EBUS-TBNA were ana-lysed. We compared cell blocks and smears for DNA yields and sequencing (TruSeq Amplicon Cancer Panel) outcomes. Smears were also evaluated for tumour cell fraction and overall cellularity (cell count). RESULTS: Primary lung cancer was diagnosed in 64 patients and metastatic malignancy in 3 patients. The DNA yield from smears was significantly higher than that obtained from matched cell blocks (mean 1,740 vs. 434 ng; p = 0.001). For 33 cases with matched smears and cell blocks the mutation profiles were similar. Smears with abundant malignant cells (using a cut-off of > 25% tumour cell fraction and > 1,000 cells) accurately predicted high (> 50 ng) DNA yield and therefore success in triaging samples to sequencing. In terms of tissue workflow, using only smears as source DNA for sequencing was an improvement in the use of only cell blocks (54/67 [80.6%] vs. 41/67 [61.2%]); however, the use of cell blocks when smears were not available or did not yield sufficient DNA further improved the success rate to 62/67 (92.5%) cases. CONCLUSION: We recommend smears in laboratory workflows as the primary source of DNA for NGS following an EBUS procedure.


Subject(s)
Azure Stains , Endoscopic Ultrasound-Guided Fine Needle Aspiration , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Methylene Blue , Xanthenes , Aged , Aged, 80 and over , Endosonography , Female , Humans , Lymph Nodes/pathology , Male , Middle Aged , Prospective Studies
18.
J Infect Dis ; 218(7): 1119-1129, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29757416

ABSTRACT

We examined transcriptional changes in CD4+ T cells during blood-stage Plasmodium falciparum infection in individuals without a history of previous parasite exposure. Transcription of CXCL8 (encoding interleukin 8) in CD4+ T cells was identified as an early biomarker of submicroscopic P. falciparum infection, with predictive power for parasite growth. Following antiparasitic drug treatment, a CD4+ T-cell regulatory phenotype developed. PD1 expression on CD49b+CD4+ T (putative type I regulatory T) cells after drug treatment negatively correlated with earlier parasite growth. Blockade of PD1 but no other immune checkpoint molecules tested increased interferon γ and interleukin 10 production in an ex vivo antigen-specific cellular assay at the peak of infection. These results demonstrate the early development of an immunoregulatory CD4+ T-cell phenotype in blood-stage P. falciparum infection and show that a selective immune checkpoint blockade may be used to modulate early developing antiparasitic immunoregulatory pathways as part of malaria vaccine and/or drug treatment protocols.


Subject(s)
Interleukin-8/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Biomarkers/analysis , CD4-Positive T-Lymphocytes/immunology , Computational Biology , Humans , Lymphocyte Activation , Malaria, Falciparum/parasitology , Middle Aged , Parasitemia , Phenotype , T-Lymphocytes, Regulatory/immunology , Young Adult
19.
Gastroenterology ; 152(1): 68-74.e2, 2017 01.
Article in English | MEDLINE | ID: mdl-27856273

ABSTRACT

Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , DNA Mismatch Repair/genetics , Mutation , Pancreatic Neoplasms/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis , Female , Genome , Humans , Male , Middle Aged , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Proto-Oncogene Proteins p21(ras)/genetics
20.
Breast Cancer Res Treat ; 170(1): 179-188, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29468485

ABSTRACT

PURPOSE: We aimed to generate and characterize a novel cell line from a breast cancer bone metastasis to better study the progression of the disease. METHODS: The cell line, P7731, was derived from a metastatic bone lesion of a breast cancer patient and assessed for marker expression. P7731 was analyzed for DNA copy number variation, somatic mutations, and gene expression and was compared with the primary tumor. RESULTS: P7731 cells are negative for estrogen receptor alpha (ERα), progesterone receptor (PR), and HER2 (triple-negative); strongly express vimentin (100% of cells positive) and also express cytokeratins 8/18 and 19 but at lower frequencies. Flow cytometry indicates P7731 cells are predominantly CD44+/CD49f+/EpCAM-, consistent with a primitive, mesenchymal-like phenotype. The cell line is tumorigenic in immunocompromised mice. Exome sequencing identified a total of 45 and 76 somatic mutations in the primary tumor and cell line, respectively, of which 32 were identified in both samples and included mutations in known driver genes PIK3CA, TP53, and ARID1A. P7731 retains the DNA copy number alterations present in the matching primary tumor. Homozygous deletions detected in the cell line and in the primary tumor were found in regions containing three known (CDKN2A, CDKN2B, and CDKN1B) and 23 putative tumor suppressor genes. Cell line-specific gene amplification coupled with mRNA expression analysis revealed genes and pathways with potential pro-metastatic functions. CONCLUSION: This novel human breast cancer-bone metastasis cell line will be a useful model to study aspects of breast cancer biology, particularly metastasis-related changes from breast to bone.


Subject(s)
Bone Neoplasms/pathology , Cell Line, Tumor , Neoplasm Proteins/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Breast/pathology , DNA Copy Number Variations/genetics , Exome/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Mutation , Triple Negative Breast Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL