Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Bioorg Med Chem Lett ; 25(9): 1905-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25857941

ABSTRACT

This Letter describes synthesis, SAR, and biological activity of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides as inhibitors of γ-secretase mediated signaling of Notch receptors. Optimization of this series led to the identification of BMS-871 (compound 30) which displayed robust in vivo efficacy in Notch-dependent leukemia and solid tumor xenograft models.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Benzodiazepinones/administration & dosage , Benzodiazepinones/pharmacology , Receptors, Notch/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Benzodiazepinones/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Receptors, Notch/metabolism , Structure-Activity Relationship
2.
ACS Med Chem Lett ; 13(7): 1165-1171, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35859878

ABSTRACT

We describe the synthesis of triazole-containing carboline derivatives and their utility as bromodomain and extra-terminal (BET) inhibitors. A convergent synthetic route permitted the detailed investigation of deuteration and fluorination strategies to reduce clearance while maintaining a favorable in vitro profile. This work led to the identification of a potent BET inhibitor, 2-{8-fluoro-3-[4-(2H3)methyl-1-methyl-1H-1,2,3-triazol-5-yl]-5-[(S)-(oxan-4-yl)(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl}propan-2-ol (15), which demonstrated reduced clearance and an improved pharmacokinetic (PK) profile across preclinical species. Importantly, no major metabolite was observed when 15 was incubated with human hepatocytes (hHEP) for 2 h. This study culminated with the evaluation of 15 in a mouse triple-negative breast cancer (TNBC) tumor model where it demonstrated robust efficacy at low doses.

3.
Bioorg Med Chem Lett ; 21(2): 781-5, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21177105
4.
J Med Chem ; 64(19): 14247-14265, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34543572

ABSTRACT

Inhibition of the bromodomain and extra-terminal (BET) family of adaptor proteins is an attractive strategy for targeting transcriptional regulation of key oncogenes, such as c-MYC. Starting with the screening hit 1, a combination of structure-activity relationship and protein structure-guided drug design led to the discovery of a differently oriented carbazole 9 with favorable binding to the tryptophan, proline, and phenylalanine (WPF) shelf conserved in the BET family. Identification of an additional lipophilic pocket and functional group optimization to optimize pharmacokinetic (PK) properties culminated in the discovery of 18 (BMS-986158) with excellent potency in binding and functional assays. On the basis of its favorable PK profile and robust in vivo activity in a panel of hematologic and solid tumor models, BMS-986158 was selected as a candidate for clinical evaluation.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Drug Discovery , Phenylalanine/pharmacology , Proline/pharmacology , Tryptophan/pharmacology , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carbazoles/administration & dosage , Carbazoles/chemistry , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Proline/administration & dosage , Proline/chemistry , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Tryptophan/administration & dosage , Tryptophan/chemistry
5.
J Med Chem ; 49(23): 6819-32, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17154512

ABSTRACT

2-aminothiazole (1) was discovered as a novel Src family kinase inhibitor template through screening of our internal compound collection. Optimization through successive structure-activity relationship iterations identified analogs 2 (Dasatinib, BMS-354825) and 12m as pan-Src inhibitors with nanomolar to subnanomolar potencies in biochemical and cellular assays. Molecular modeling was used to construct a putative binding model for Lck inhibition by this class of compounds. The framework of key hydrogen-bond interactions proposed by this model was in agreement with the subsequent, published crystal structure of 2 bound to structurally similar Abl kinase. The oral efficacy of this class of inhibitors was demonstrated with 12m in inhibiting the proinflammatory cytokine IL-2 ex vivo in mice (ED50 approximately 5 mg/kg) and in reducing TNF levels in an acute murine model of inflammation (90% inhibition in LPS-induced TNFalpha production when dosed orally at 60 mg/kg, 2 h prior to LPS administration). The oral efficacy of 12m was further demonstrated in a chronic model of adjuvant arthritis in rats with established disease when administered orally at 0.3 and 3 mg/kg twice daily. Dasatinib (2) is currently in clinical trials for the treatment of chronic myelogenous leukemia.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Pyrimidines/chemical synthesis , Thiazoles/chemical synthesis , src-Family Kinases/antagonists & inhibitors , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Cell Proliferation/drug effects , Chronic Disease , Dasatinib , Female , Humans , In Vitro Techniques , Inflammation/blood , Inflammation/chemically induced , Interleukin-2/antagonists & inhibitors , Lipopolysaccharides , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Molecular , Protein Binding , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Inbred Lew , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Thiazoles/chemistry , Thiazoles/pharmacology , Tumor Necrosis Factor-alpha/metabolism
6.
ACS Med Chem Lett ; 6(5): 523-7, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005526

ABSTRACT

Structure-activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.

7.
J Med Chem ; 46(11): 2110-6, 2003 May 22.
Article in English | MEDLINE | ID: mdl-12747783

ABSTRACT

A series of unique indazoles and pyridoindolones have been rationally designed and synthesized as novel classes of cannabinoid ligands based on a proposed bioactive amide conformation. This has led to the discovery of the novel indolopyridone 3a as a conformationally constrained cannabinoid ligand that displays high affinity for the CB2 receptor (K(i)(CB2) = 1.0 nM) and possesses antiinflammatory properties when administered orally in an in vivo murine inflammation model.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cannabinoids/metabolism , Indoles/chemical synthesis , Norbornanes/chemical synthesis , Pyridones/chemical synthesis , Receptors, Drug/agonists , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cells, Cultured , Cricetinae , Drug Design , Female , Humans , Indoles/chemistry , Indoles/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Ligands , Lipopolysaccharides , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Conformation , Norbornanes/chemistry , Norbornanes/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Receptors, Cannabinoid , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
8.
J Med Chem ; 47(27): 6658-61, 2004 Dec 30.
Article in English | MEDLINE | ID: mdl-15615512

ABSTRACT

A series of substituted 2-(aminopyridyl)- and 2-(aminopyrimidinyl)thiazole-5-carboxamides was identified as potent Src/Abl kinase inhibitors with excellent antiproliferative activity against hematological and solid tumor cell lines. Compound 13 was orally active in a K562 xenograft model of chronic myelogenous leukemia (CML), demonstrating complete tumor regressions and low toxicity at multiple dose levels. On the basis of its robust in vivo activity and favorable pharmacokinetic profile, 13 was selected for additional characterization for oncology indications.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Pyrimidines/pharmacology , Thiazoles/pharmacology , src-Family Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Dasatinib , Humans , K562 Cells , Mice , Proto-Oncogene Proteins c-abl/chemistry , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Thiazoles/pharmacokinetics , src-Family Kinases/chemistry
9.
J Med Chem ; 47(18): 4517-29, 2004 Aug 26.
Article in English | MEDLINE | ID: mdl-15317463

ABSTRACT

A series of novel anilino 5-azaimidazoquinoxaline analogues possessing potent in vitro activity against p56Lck and T cell proliferation have been discovered. Subsequent SAR studies led to the identification of compound 4 (BMS-279700) as an orally active lead candidate that blocks the production of proinflammatory cytokines (IL-2 and TNFalpha) in vivo. In addition, an expanded set of imidazoquinoxalines provided several descriptive QSAR models highlighting the influence of significant steric and electronic features. The H-bonding (Met319) contribution to observed binding affinities within a tightly congeneric series was found to be significant.


Subject(s)
Anti-Inflammatory Agents/chemistry , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Quinoxalines/chemistry , Quinoxalines/pharmacokinetics , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Biological Availability , Cytokines/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Female , Hydrogen Bonding , Inhibitory Concentration 50 , Mice , Mice, Inbred C57BL , Models, Molecular , Pyrazines/chemistry , Pyrazines/pharmacology , Quinoxalines/pharmacology , src-Family Kinases/antagonists & inhibitors
10.
Clin Cancer Res ; 17(12): 4031-41, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21531814

ABSTRACT

PURPOSE: The extensive involvement of the HER kinases in epithelial cancer suggests that kinase inhibitors targeting this receptor family have the potential for broad spectrum antitumor activity. BMS-690514 potently inhibits all three HER kinases, and the VEGF receptor kinases. This report summarizes data from biochemical and cellular pharmacology studies, as well as antitumor activity of BMS-690514. EXPERIMENTAL DESIGN: The potency and selectivity of BMS-690514 was evaluated by using an extensive array of enzymatic and binding assays, as well as cellular assays that measure proliferation and receptor signaling. Antitumor activity was evaluated by using multiple xenograft models that depend on HER kinase signaling. The antiangiogenic properties of BMS-690514 were assessed in a matrigel plug assay, and effect on tumor blood flow was measured by dynamic contrast-enhanced MRI. RESULTS: BMS-690514 is a potent and selective inhibitor of epidermal growth factor receptor (EGFR), HER2, and HER4, as well as the VEGF receptor kinases. It inhibits proliferation of tumor cells with potency that correlates with inhibition of receptor signaling, and induces apoptosis in lung tumor cells that have an activating mutation in EGFR. Antitumor activity was observed with BMS-690514 at multiple doses that are well tolerated in mice. There was evidence of suppression of tumor angiogenesis and endothelial function by BMS-690514, which may contribute to its efficacy. CONCLUSIONS: By combining inhibition of two receptor kinase families, BMS-690524 is a novel targeted agent that disrupts signaling in the tumor and its vasculature.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , ErbB Receptors/antagonists & inhibitors , Neoplasms/enzymology , Piperidines/pharmacology , Pyrroles/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Triazines/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/blood supply , Neovascularization, Pathologic/enzymology , Receptor, ErbB-2/metabolism , Regional Blood Flow/drug effects , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
11.
J Med Chem ; 52(21): 6527-30, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19821562

ABSTRACT

Structure-activity relationships in a series of 4-[1H-indazol-5-ylamino]pyrrolo[2,1-f][1,2,4]triazine-6-carbamates identified dual human epidermal growth factor receptor (HER)1/HER2 kinase inhibitors with excellent biochemical potency and kinase selectivity. On the basis of its favorable pharmacokinetic profile and robust in vivo activity in HER1 and HER2 driven tumor models, 13 (BMS-599626) was selected as a clinical candidate for treatment of solid tumors.


Subject(s)
Antineoplastic Agents/chemical synthesis , Carbamates/chemical synthesis , ErbB Receptors/antagonists & inhibitors , Receptor, ErbB-2/antagonists & inhibitors , Triazines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Carbamates/pharmacokinetics , Carbamates/pharmacology , Cell Line, Tumor , Dogs , Drug Screening Assays, Antitumor , Humans , Macaca fascicularis , Mice , Neoplasm Transplantation , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous , Triazines/pharmacokinetics , Triazines/pharmacology
12.
Bioorg Med Chem Lett ; 17(17): 4947-54, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17606372

ABSTRACT

Pyrrolotriazine dual EGFR/HER2 kinase inhibitors with a 5-((4-aminopiperidin-1-yl)methyl) solubilizing group were found to be superior to analogs with previously reported C-5 solubilizing groups. New synthetic methodology was developed for the parallel synthesis of C-4 analogs with the new solubilizing group. Interesting new leads were evaluated in tumor xenograft models and the C-4 aminofluorobenzylindazole, 1c, was found to exhibit the best antitumor activity. It is hypothesized that this solubilizing group extends into the ribose-phosphate portion of the ATP binding pocket and enhances the binding affinity of the inhibitor.


Subject(s)
Chemistry, Pharmaceutical/methods , ErbB Receptors/chemistry , Neoplasms/drug therapy , Piperidines/chemical synthesis , Pyrroles/chemical synthesis , Receptor, ErbB-2/chemistry , Triazines/chemical synthesis , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Insecta , Models, Chemical , Neoplasm Transplantation , Piperidines/chemistry , Piperidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Triazines/chemistry , Triazines/pharmacology
14.
Science ; 305(5682): 399-401, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15256671

ABSTRACT

Resistance to the ABL kinase inhibitor imatinib (STI571 or Gleevec) in chronic myeloid leukemia (CML) occurs through selection for tumor cells harboring BCR-ABL kinase domain point mutations that interfere with drug binding. Crystallographic studies predict that most imatinib-resistant mutants should remain sensitive to inhibitors that bind ABL with less stringent conformational requirements. BMS-354825 is an orally bioavailable ABL kinase inhibitor with two-log increased potency relative to imatinib that retains activity against 14 of 15 imatinib-resistant BCR-ABL mutants. BMS-354825 prolongs survival of mice with BCR-ABL-driven disease and inhibits proliferation of BCR-ABL-positive bone marrow progenitor cells from patients with imatinib-sensitive and imatinib-resistant CML. These data illustrate how molecular insight into kinase inhibitor resistance can guide the design of second-generation targeted therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Fusion Proteins, bcr-abl/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Piperazines/pharmacology , Pyrimidines/pharmacology , Thiazoles/pharmacology , Amino Acid Substitution , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Benzamides , Binding Sites , Cell Division/drug effects , Cell Line , Clinical Trials, Phase I as Topic , Dasatinib , Drug Resistance, Neoplasm , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fusion Proteins, bcr-abl/chemistry , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Hematopoietic Stem Cells/drug effects , Humans , Imatinib Mesylate , Mice , Mice, SCID , Mutation , Piperazines/therapeutic use , Protein Conformation , Pyrimidines/metabolism , Pyrimidines/therapeutic use , Thiazoles/metabolism , Thiazoles/therapeutic use , Transfection
15.
Bioorg Med Chem Lett ; 13(20): 3557-60, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-14505670

ABSTRACT

A series of novel small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH), based upon a 3-cyanoindole core, were explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SAR), derived from in vitro studies, for this new series of inhibitors is given.


Subject(s)
Enzyme Inhibitors/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , Indoles/pharmacology , Catalysis , Kinetics , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 13(7): 1345-8, 2003 Apr 07.
Article in English | MEDLINE | ID: mdl-12657279

ABSTRACT

Screening of our in-house compound collection led to the discovery of 5-bromo-6-amino-2-isoquinoline 1 as a weak inhibitor of IMPDH. Subsequent optimization of 1 afforded a series of novel 2-isoquinolinoaminooxazole-based inhibitors, represented by 17, with single-digit nanomolar potency against the enzyme.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Oxazoles/chemical synthesis , Oxazoles/pharmacology , Drug Evaluation, Preclinical , Escherichia coli/enzymology , Humans , NAD/metabolism , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 14(24): 6061-6, 2004 Dec 20.
Article in English | MEDLINE | ID: mdl-15546730
20.
Bioorg Med Chem Lett ; 12(21): 3153-6, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12372522

ABSTRACT

A series of anilino(imidazoquinoxaline) analogues bearing solubilizing side chains at the 6- and 7-positions of the fused phenyl ring has been prepared and evaluated for inhibition against Lck enzyme and of T-cell proliferation. Significant improvement of the cellular activity was achieved over the initial lead, compound 2.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Cell Division/drug effects , Humans , Indicators and Reagents , Structure-Activity Relationship , T-Lymphocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL