Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500549

ABSTRACT

Gadolinium is a paramagnetic relaxation enhancement (PRE) agent that accelerates the relaxation of metabolite nuclei. In this study, we noted the ability of gadolinium to improve the sensitivity of two-dimensional, non-uniform sampled NMR spectral data collected from metabolomics samples. In time-equivalent experiments, the addition of gadolinium increased the mean signal intensity measurement and the signal-to-noise ratio for metabolite resonances in both standard and plasma samples. Gadolinium led to highly linear intensity measurements that correlated with metabolite concentrations. In the presence of gadolinium, we were able to detect a broad array of metabolites with a lower limit of detection and quantification in the low micromolar range. We also observed an increase in the repeatability of intensity measurements upon the addition of gadolinium. The results of this study suggest that the addition of a gadolinium-based PRE agent to metabolite samples can improve NMR-based metabolomics.


Subject(s)
Gadolinium/chemistry , Magnetic Resonance Imaging/methods , Metabolomics/methods , Image Enhancement/methods , Magnetic Resonance Spectroscopy/methods , Signal-To-Noise Ratio
2.
Occup Environ Med ; 74(5): 336-343, 2017 05.
Article in English | MEDLINE | ID: mdl-27919058

ABSTRACT

OBJECTIVE: With increasing emphasis on early and frequent mobilisation of patients in acute care, safe patient handling and mobilisation practices need to be integrated into these quality initiatives. We completed a programme evaluation of a safe patient handling and mobilisation programme within the context of a hospital-wide patient care improvement initiative that utilised a systems approach and integrated safe patient equipment and practices into patient care plans. METHODS: Baseline and 12-month follow-up surveys of 1832 direct patient care workers assessed work practices and self-reported pain while an integrated employee payroll and injury database provided recordable injury rates collected concurrently at 2 hospitals: the study hospital with the programme and a comparison hospital. RESULTS: Safe and unsafe patient handling practice scales at the study hospital improved significantly (p<0.0001 and p=0.0031, respectively), with no differences observed at the comparison hospital. We observed significant decreases in recordable neck and shoulder (Relative Risk (RR)=0.68, 95% CI 0.46 to 1.00), lifting and exertion (RR=0.73, 95% CI 0.60 to 0.89) and pain and inflammation (RR=0.78, 95% CI 0.62 to 1.00) injury rates at the study hospital. Changes in rates at the comparison hospital were not statistically significant. CONCLUSIONS: Within the context of a patient mobilisation initiative, a safe patient handling and mobilisation programme was associated with improved work practices and a reduction in recordable worker injuries. This study demonstrates the potential impact of utilising a systems approach based on recommended best practices, including integration of these practices into the patient's plan for care.


Subject(s)
Moving and Lifting Patients/methods , Musculoskeletal Pain/prevention & control , Occupational Diseases/prevention & control , Occupational Injuries/prevention & control , Safety Management/methods , Adult , Analysis of Variance , Boston/epidemiology , Databases, Factual , Female , Health Personnel , Health Promotion/methods , Hospitals , Humans , Male , Middle Aged , Musculoskeletal Pain/epidemiology , Musculoskeletal System/injuries , Occupational Diseases/epidemiology , Occupational Injuries/epidemiology , Physical Exertion , Program Evaluation , Quality Improvement
3.
Mol Cell ; 35(5): 610-25, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19748357

ABSTRACT

miR-24, upregulated during terminal differentiation of multiple lineages, inhibits cell-cycle progression. Antagonizing miR-24 restores postmitotic cell proliferation and enhances fibroblast proliferation, whereas overexpressing miR-24 increases the G1 compartment. The 248 mRNAs downregulated upon miR-24 overexpression are highly enriched for DNA repair and cell-cycle regulatory genes that form a direct interaction network with prominent nodes at genes that enhance (MYC, E2F2, CCNB1, and CDC2) or inhibit (p27Kip1 and VHL) cell-cycle progression. miR-24 directly regulates MYC and E2F2 and some genes that they transactivate. Enhanced proliferation from antagonizing miR-24 is abrogated by knocking down E2F2, but not MYC, and cell proliferation, inhibited by miR-24 overexpression, is rescued by miR-24-insensitive E2F2. Therefore, E2F2 is a critical miR-24 target. The E2F2 3'UTR lacks a predicted miR-24 recognition element. In fact, miR-24 regulates expression of E2F2, MYC, AURKB, CCNA2, CDC2, CDK4, and FEN1 by recognizing seedless but highly complementary sequences.


Subject(s)
3' Untranslated Regions , Cell Cycle/genetics , Cell Proliferation , E2F2 Transcription Factor/genetics , Genes, cdc , MicroRNAs/metabolism , Proto-Oncogene Proteins c-myc/genetics , Regulatory Sequences, Nucleic Acid , Base Sequence , Binding Sites , Cell Differentiation/genetics , DNA Repair , Databases, Genetic , Down-Regulation , Erythrocytes/metabolism , Fibroblasts/metabolism , Gene Regulatory Networks , HL-60 Cells , Humans , K562 Cells , Macrophages/metabolism , Megakaryocytes/metabolism , Molecular Sequence Data , RNA Interference , RNA, Messenger/metabolism , Transcriptional Activation
4.
Proc Natl Acad Sci U S A ; 111(51): 18201-6, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25404306

ABSTRACT

Angiogenin (ANG) is a stress-activated ribonuclease that promotes the survival of motor neurons. Ribonuclease inactivating point mutations are found in a subset of patients with ALS, a fatal neurodegenerative disease with no cure. We recently showed that ANG cleaves tRNA within anticodon loops to produce 5'- and 3'-fragments known as tRNA-derived, stress-induced RNAs (tiRNAs). Selected 5'-tiRNAs (e.g., tiRNA(Ala), tiRNA(Cys)) cooperate with the translational repressor Y-box binding protein 1 (YB-1) to displace the cap-binding complex eIF4F from capped mRNA, inhibit translation initiation, and induce the assembly of stress granules (SGs). Here, we show that translationally active tiRNAs assemble unique G-quadruplex (G4) structures that are required for translation inhibition. We show that tiRNA(Ala) binds the cold shock domain of YB-1 to activate these translational reprogramming events. We discovered that 5'-tiDNA(Ala) (the DNA equivalent of 5'-tiRNA(Ala)) is a stable tiRNA analog that displaces eIF4F from capped mRNA, inhibits translation initiation, and induces the assembly of SGs. The 5'-tiDNA(Ala) also assembles a G4 structure that allows it to enter motor neurons spontaneously and trigger a neuroprotective response in a YB-1-dependent manner. Remarkably, the ability of 5'-tiRNA(Ala) to induce SG assembly is inhibited by G4 structures formed by pathological GGGGCC repeats found in C9ORF72, the most common genetic cause of ALS, suggesting that functional interactions between G4 RNAs may contribute to neurodegenerative disease.


Subject(s)
G-Quadruplexes , Neuroprotective Agents/pharmacology , RNA, Transfer/pharmacology , Ribonuclease, Pancreatic/pharmacology , Anticodon , Humans , Neuroprotective Agents/chemistry , RNA, Transfer/chemistry
5.
J Biol Chem ; 290(29): 17909-17922, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26045559

ABSTRACT

Lin28 is an evolutionarily conserved RNA-binding protein that inhibits processing of pre-let-7 microRNAs (miRNAs) and regulates translation of mRNAs that control developmental timing, pluripotency, metabolism, and tumorigenesis. The RNA features that mediate Lin28 binding to the terminal loops of let-7 pre-miRNAs and to Lin28-responsive elements (LREs) in mRNAs are not well defined. Here we show that Lin28 target datasets are enriched for RNA sequences predicted to contain stable planar structures of 4 guanines known as G-quartets (G4s). The imino NMR spectra of pre-let-7 loops and LREs contain resonances characteristic of G4 hydrogen bonds. These sequences bind to a G4-binding fluorescent dye, N-methyl-mesoporphyrin IX (NMM). Mutations and truncations in the RNA sequence that prevent G4 formation also prevent Lin28 binding. The addition of Lin28 to a pre-let-7 loop or an LRE reduces G4 resonance intensity and NMM binding, suggesting that Lin28 may function to remodel G4s. Further, we show that NMM inhibits Lin28 binding. Incubation of a human embryonal carcinoma cell line with NMM reduces its stem cell traits. In particular it increases mature let-7 levels, decreases OCT4, HMGA1, CCNB1, CDK4, and Lin28A protein, decreases sphere formation, and inhibits colony formation. Our results suggest a previously unknown structural feature of Lin28 targets and a new strategy for manipulating Lin28 function.


Subject(s)
G-Quadruplexes , MicroRNAs/chemistry , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Animals , Base Sequence , Cell Line , Humans , Mesoporphyrins/metabolism , Mice , MicroRNAs/genetics , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Am J Ind Med ; 57(7): 810-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24737462

ABSTRACT

BACKGROUND: Hospital patient care (PC) workers have high rates of workplace injuries, particularly musculoskeletal injuries. Despite a wide spectrum of documented health hazards, little is known about the association between psychosocial factors at work and OSHA-recordable musculoskeletal injuries. METHODS: PC-workers (n = 1,572, 79%) completed surveys assessing a number of organizational, psychosocial and psychological variables. Associations between the survey responses and injury records were tested using bivariate and multivariate analyses. RESULTS: A 5% of the PC-workers had at least one OSHA-recordable musculoskeletal injury over the year, and the injuries were significantly associated with: organizational factors (lower people-oriented culture), psychosocial factors (lower supervisor support), and structural factors (job title: being a patient care assistant). CONCLUSIONS: The results show support for a multifactorial understanding of musculoskeletal injuries in hospital PC-workers. An increased focus on the various dimensions associated with injury reports, particularly the organizational and psychosocial factors, could contribute to more efficient interventions and programs.


Subject(s)
Musculoskeletal System/injuries , Occupational Injuries/etiology , Personnel, Hospital , Adult , Aged , Cross-Sectional Studies , Female , Health Surveys , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Organizational Culture , Personnel, Hospital/psychology , Psychology, Industrial , Risk Factors
9.
Proc Natl Acad Sci U S A ; 108(22): 9244-9, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21576478

ABSTRACT

Human immune cells infected by HIV naturally contain high uracil content, and HIV reverse transcriptase (RT) does not distinguish between dUTP and dTTP. Many DNA viruses and retroviruses encode a dUTPase or uracil-DNA glycosylase (UNG) to counteract uracil incorporation. However, although HIV virions are thought to contain cellular UNG2, replication of HIV produced in cells lacking UNG activity does not appear to be impaired. Here we show that HIV reverse transcripts generated in primary human immune cells are heavily uracilated (>500 uracils per 10 kb HIV genome). We find that HIV DNA uracilation, rather than being dangerous, may promote the early phase of the viral life cycle. Shortly after reverse transcription, the ends of the HIV DNA are activated by the viral integrase (IN) in preparation for chromosomal insertion. However, the activated ends can attack the viral DNA itself in a suicidal side pathway, called autointegration. We find here that uracilation of target DNA inhibits the strand transfer of HIV DNA ends by IN, thereby inhibiting autointegration and facilitating chromosomal integration and viral replication. When uracilation is increased by incubating uracil-poor cells in the presence of increasing concentrations of dUTP or by infecting with virus that contains the cytosine deaminase APOBEC3G (A3G), the proportion of reverse transcripts that undergo suicidal autointegration decreases. Thus, HIV tolerates, or even benefits from, nonmutagenic uracil incorporation during reverse transcription in human immune cells.


Subject(s)
CD4-Positive T-Lymphocytes/virology , DNA, Viral/genetics , HIV/genetics , Mutation , Uracil/chemistry , Virus Replication , HIV/metabolism , Humans , Immune System , Macrophages/virology , Plasmids/metabolism , Polymerase Chain Reaction/methods , RNA, Messenger/metabolism , Time Factors , Uracil-DNA Glycosidase/metabolism , Virion
10.
PLoS Genet ; 7(11): e1002363, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22102825

ABSTRACT

A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.


Subject(s)
Genes, Tumor Suppressor , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , Signal Transduction/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division/genetics , Cell Proliferation , Gene Expression Regulation , Gene Regulatory Networks/genetics , HCT116 Cells , HeLa Cells , Humans , K562 Cells , MAP Kinase Signaling System , Oligonucleotide Array Sequence Analysis , Oncogene Protein v-akt/genetics , Oncogene Protein v-akt/metabolism , Phosphorylation , RNA, Messenger/genetics
11.
PLoS Genet ; 7(9): e1002242, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21935352

ABSTRACT

MicroRNAs regulate networks of genes to orchestrate cellular functions. MiR-125b, the vertebrate homologue of the Caenorhabditis elegans microRNA lin-4, has been implicated in the regulation of neural and hematopoietic stem cell homeostasis, analogous to how lin-4 regulates stem cells in C. elegans. Depending on the cell context, miR-125b has been proposed to regulate both apoptosis and proliferation. Because the p53 network is a central regulator of both apoptosis and proliferation, the dual roles of miR-125b raise the question of what genes in the p53 network might be regulated by miR-125b. By using a gain- and loss-of-function screen for miR-125b targets in humans, mice, and zebrafish and by validating these targets with the luciferase assay and a novel miRNA pull-down assay, we demonstrate that miR-125b directly represses 20 novel targets in the p53 network. These targets include both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra, Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l, in the p53 network. We found that, although each miRNA-target pair was seldom conserved, miR-125b regulation of the p53 pathway is conserved at the network level. Our results lead us to propose that miR-125b buffers and fine-tunes p53 network activity by regulating the dose of both proliferative and apoptotic regulators, with implications for tissue stem cell homeostasis and oncogenesis.


Subject(s)
Apoptosis/genetics , Gene Expression Regulation , Gene Regulatory Networks/genetics , MicroRNAs/metabolism , Tumor Suppressor Protein p53/genetics , 3' Untranslated Regions , 3T3 Cells , Animals , Cell Line , Cell Proliferation , HEK293 Cells , Humans , Mice , MicroRNAs/genetics , Microinjections , Zebrafish
12.
Biomark Med ; : 1-8, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39234983

ABSTRACT

Kidney transplantation is the most efficient renal replacement therapy. Current diagnostics for monitoring graft health are either invasive or lack precision. Metabolomics is an emerging discipline focused on the analysis of the small molecules involved in metabolism. Given the kidneys' central role in metabolic homeostasis and previous observations of altered metabolites correlating with restricted kidney graft function, metabolomics is highly promising for the discovery of novel biomarkers and the development of novel diagnostics. In this perspective, we summarize the known metabolic roles for the kidney, discuss biomarkers of graft health and immune status emerging from metabolomics research, and provide our perspective on how these and future findings can be integrated in clinical practice to enable precision diagnostics.


[Box: see text].

13.
Metabolites ; 14(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786752

ABSTRACT

Metabolomics, especially urine-based studies, offers incredible promise for the discovery and development of clinically impactful biomarkers. However, due to the unique challenges of urine, a highly precise and reproducible workflow for NMR-based urine metabolomics is lacking. Using 1D and 2D non-uniform sampled (NUS) 1H-13C NMR spectroscopy, we systematically explored how changes in hydration or specific gravity (SG) and pH can impact biomarker discovery. Further, we examined additional sources of error in metabolomics studies and identified Navigator molecules that could monitor for those biases. Adjustment of SG to 1.002-1.02 coupled with a dynamic sum-based peak thresholding eliminates false positives associated with urine hydration and reduces variation in chemical shift. We identified Navigator molecules that can effectively monitor for inconsistencies in sample processing, SG, protein contamination, and pH. The workflow described provides quality assurance and quality control tools to generate high-quality urine metabolomics data, which is the first step in biomarker discovery.

14.
Metabolites ; 14(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38786757

ABSTRACT

Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of this method, multiple HILIC columns and mobile phase conditions were compared, the robustness of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality. Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy and precision. The use of these U-13C-metabolites as internal standards improved the goodness of fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite ratios to internal standards were consistently lower than 7% and less than 10% across batches that were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to identify biomarkers, was confirmed using a large sample set.

15.
Transplant Direct ; 10(9): e1704, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39220220

ABSTRACT

Background: The number of patients waiting for heart transplant far exceeds the number of hearts available. Donation after circulatory death (DCD) combined with machine perfusion can increase the number of transplantable hearts by as much as 48%. Emerging studies also suggest machine perfusion could enable allograft "reconditioning" to optimize outcomes. However, a detailed understanding of the energetic substrates and metabolic changes during perfusion is lacking. Methods: Metabolites were analyzed using 1-dimensional 1H and 2-dimensional 13C-1H heteronuclear spectrum quantum correlation nuclear magnetic resonance spectroscopy on serial perfusate samples (N = 98) from 32 DCD hearts that were successfully transplanted. Wilcoxon signed-rank and Kruskal-Wallis tests were used to test for significant differences in metabolite resonances during perfusion and network analysis was used to uncover altered metabolic pathways. Results: Metabolite differences were observed comparing baseline perfusate to samples from hearts at time points 1-2, 3-4, and 5-6 h of perfusion and all pairwise combinations. Among the most significant changes observed were a steady decrease in fatty acids and succinate and an increase in amino acids, especially alanine, glutamine, and glycine. This core set of metabolites was also altered in a DCD porcine model perfused with a nonblood-based perfusate. Conclusions: Temporal metabolic changes were identified during ex vivo perfusion of DCD hearts. Fatty acids, which are normally the predominant myocardial energy source, are rapidly depleted, while amino acids such as alanine, glutamine, and glycine increase. We also noted depletion of ketone, ß-hydroxybutyric acid, which is known to have cardioprotective properties. Collectively, these results suggest a shift in energy substrates and provide a basis to design optimal preservation techniques during perfusion.

16.
Metabolites ; 12(2)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35208223

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease, causing loss of motor and nonmotor function. Diagnosis is based on clinical symptoms that do not develop until late in the disease progression, at which point the majority of the patients' dopaminergic neurons are already destroyed. While many PD cases are idiopathic, hereditable genetic risks have been identified, including mutations in the gene for LRRK2, a multidomain kinase with roles in autophagy, mitochondrial function, transcription, molecular structural integrity, the endo-lysosomal system, and the immune response. A definitive PD diagnosis can only be made post-mortem, and no noninvasive or blood-based disease biomarkers are currently available. Alterations in metabolites have been identified in PD patients, suggesting that metabolomics may hold promise for PD diagnostic tools. In this study, we sought to identify metabolic markers of PD in plasma. Using a 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) NMR spectroscopy metabolomics platform coupled with machine learning (ML), we measured plasma metabolites from approximately age/sex-matched PD patients with G2019S LRRK2 mutations and non-PD controls. Based on the differential level of known and unknown metabolites, we were able to build a ML model and develop a Biomarker of Response (BoR) score, which classified male LRRK2 PD patients with 79.7% accuracy, 81.3% sensitivity, and 78.6% specificity. The high accuracy of the BoR score suggests that the metabolomics/ML workflow described here could be further utilized in the development of a confirmatory diagnostic for PD in larger patient cohorts. A diagnostic assay for PD will aid clinicians and their patients to quickly move toward a definitive diagnosis, and ultimately empower future clinical trials and treatment options.

17.
Prog Biophys Mol Biol ; 165: 8-18, 2021 10.
Article in English | MEDLINE | ID: mdl-34419530

ABSTRACT

Breast cancer is the most common cancer in women worldwide and despite improved treatment strategies, it persists as the second leading cause of death of women globally. Overall prognosis drops drastically once the cancer has metastasized, which is also associated with resistance to therapy. The evolution from a localized breast cancer to metastatic disease is complex and multifactorial. Metabolic reprogramming is a pre-requisite for this transition. In this graphical review, we provide an overview of altered metabolic pathways observed in metastatic breast cancer (mBC) and detail how metabolite biomarkers could serve as a novel class of precision medicine tools to improve the diagnosis, monitoring, and treatment of mBC.


Subject(s)
Breast Neoplasms , Biomarkers , Breast Neoplasms/diagnosis , Female , Humans
18.
Breast Cancer Res ; 12(2): 201, 2010.
Article in English | MEDLINE | ID: mdl-20346098

ABSTRACT

MicroRNAs (miRNAs) are a major class of small endogenous RNA molecules that post-transcriptionally inhibit gene expression. Many miRNAs have been implicated in several human cancers, including breast cancer. Here we describe the association between altered miRNA signatures and breast cancer tumorigenesis and metastasis. The loss of several tumor suppressor miRNAs (miR-206, miR-17-5p, miR-125a, miR-125b, miR-200, let-7, miR-34 and miR-31) and the overexpression of certain oncogenic miRNAs (miR-21, miR-155, miR-10b, miR-373 and miR-520c) have been observed in many breast cancers. The gene networks orchestrated by these miRNAs are still largely unknown, although key targets have been identified that may contribute to the disease phenotype. Here we report how the observed perturbations in miRNA expression profiles may lead to disruption of key pathways involved in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/genetics , Female , Humans , Proto-Oncogene Proteins c-bcl-2/genetics
19.
Metabolites ; 10(5)2020 May 16.
Article in English | MEDLINE | ID: mdl-32429340

ABSTRACT

Metabolomics is the comprehensive study of metabolism, the biochemical processes that sustain life. By comparing metabolites between healthy and disease states, new insights into disease mechanisms can be uncovered. NMR is a powerful analytical method to detect and quantify metabolites. Standard one-dimensional (1D) 1H-NMR metabolite profiling is informative but challenged by significant chemical shift overlap. Multi-dimensional NMR can increase resolution, but the required long acquisition times lead to limited throughput. Non-uniform sampling (NUS) is a well-accepted mode of acquiring multi-dimensional NMR data, enabling either reduced acquisition times or increased sensitivity in equivalent time. Despite these advantages, the technique is not widely applied to metabolomics. In this study, we evaluated the utility of NUS 1H-13C heteronuclear single quantum coherence (HSQC) for semi-quantitative metabolomics. We demonstrated that NUS improved sensitivity compared to uniform sampling (US). We verified that the NUS measurement maintains linearity, making it possible to detect metabolite changes across samples and studies. Furthermore, we calculated the lower limit of detection and quantification (LOD/LOQ) of common metabolites. Finally, we demonstrate that the measurements are repeatable on the same system and across different systems. In conclusion, our results detail the analytical capability of NUS and, in doing so, empower the future use of NUS 1H-13C HSQC in metabolomic studies.

20.
Biotechnol J ; 14(1): e1800195, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29799175

ABSTRACT

Patient X: A 67-year-old Caucasian man slips on a patch of ice. He has abrasions to his hands and has sustained significant damage to his hip. At the emergency room, he informs clinicians he takes atorvastatin, metformin, and glimepiride to treat hypertension and Type 2 Diabetes Mellitus (T2DM). X-rays reveal a fractured hip, which will require total hip replacement surgery.


Subject(s)
Biotechnology/methods , Public Health , Gene Editing , Humans , Precision Medicine , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL