Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Microvasc Res ; 152: 104646, 2024 03.
Article in English | MEDLINE | ID: mdl-38092222

ABSTRACT

Blood flow in the gingiva, comprising the interdental papilla as well as attached and marginal gingiva, is important for maintaining of gingival function and is modulated by risk factors such as stress that may lead to periodontal disease. Marked blood flow changes mediated by the autonomic (parasympathetic and sympathetic) nervous system may be essential for gingival hemodynamics. However, differences in autonomic vasomotor responses and their functional significance in different parts of the gingiva are unclear. We examined the differences in autonomic vasomotor responses and their interactions in the gingiva of anesthetized rats. Parasympathetic vasodilation evoked by the trigeminal (lingual nerve)-mediated reflex elicited frequency-dependent blood flow increases in gingivae, with the increases being greatest in the interdental papilla. Parasympathetic blood flow increases were significantly reduced by intravenous administration of the atropine and VIP antagonist. The blood flow increase evoked by acetylcholine administration was higher in the interdental papilla than in the attached gingiva, whereas that evoked by VIP agonist administration was greater in the attached gingiva than in the interdental papilla. Activation of the cervical sympathetic nerves decreased gingival blood flow and inhibited parasympathetically induced blood flow increases. Our results suggest that trigeminal-parasympathetic reflex vasodilation 1) is more involved in the regulation of blood flow in the interdental papilla than in the other parts of the gingiva, 2) is mediated by cholinergic (interdental papilla) and VIPergic systems (attached gingiva), and 3) is inhibited by excess sympathetic activity. These results suggest a role in the etiology of periodontal diseases during mental stress.


Subject(s)
Gingiva , Sympathetic Nervous System , Rats , Animals , Gingiva/blood supply , Vasodilation , Atropine/pharmacology
2.
Microvasc Res ; 138: 104214, 2021 11.
Article in English | MEDLINE | ID: mdl-34217740

ABSTRACT

Skeletal muscle hemodynamics, including that in jaw muscles, is an important in their functions and is modulated by aging. Marked blood flow increases mediated by parasympathetic vasodilation may be important for blood flow in the masseter muscle (MBF); however, the relationship between parasympathetic vasodilation and aging is unclear. We examined the effect of aging on parasympathetic vasodilation evoked by trigeminal afferent inputs and their mechanisms by investigating the MBF during stimulation of the lingual nerve (LN) in young and old urethane-anesthetized and vago-sympathectomized rats. Electrical stimulation of the central cut end of the LN elicited intensity- and frequency-dependent increases in MBF in young rats, while these increases were significantly reduced in old rats. Increases in the MBF evoked by LN stimulation in the young rats were greatly reduced by hexamethonium and atropine administration. Increases in MBF in young rats were produced by exogenous acetylcholine in a dose-dependent manner, whereas acetylcholine did not influence the MBF in old rats. Significant levels of muscarinic acetylcholine receptor type 1 (MR1) and type 3 (MR3) mRNA were observed in the masseter muscle in young rats, but not in old rats. Our results indicate that cholinergic parasympathetic reflex vasodilation evoked by trigeminal afferent inputs to the masseter muscle is reduced by aging and that this reduction may be mediated by suppression of the expression of MR1 and MR3 in the masseter muscle with age.


Subject(s)
Aging/physiology , Arteries/innervation , Cholinergic Fibers/physiology , Masseter Muscle/blood supply , Parasympathetic Nervous System/physiology , Reflex , Trigeminal Nerve/physiology , Vasodilation , Acetylcholine/metabolism , Age Factors , Aging/metabolism , Animals , Cholinergic Fibers/metabolism , Electric Stimulation , Male , Masseter Muscle/metabolism , Parasympathetic Nervous System/metabolism , Rats, Wistar , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/metabolism , Regional Blood Flow , Sympathectomy , Trigeminal Nerve/metabolism , Vagotomy
3.
Med Mol Morphol ; 54(4): 346-355, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34324049

ABSTRACT

The stratified squamous epithelium has a multilayer structure formed by the differentiation of the keratinized epithelium, which covers the skin and oral mucosa. The epithelium plays a central role in regulating the interactions between the immune system and pathogens. The tight junction (TJ) barrier, which is composed of adhesion molecules called claudins (CLDN), is critical for the homeostasis of the skin and oral mucosa. Furthermore, the crucial roles of vitamin D3 (VD3) in the pathogeneses of skin and oral mucosal disease have been suggested. The aim of this in vitro study was to observe the correlations between the integrity of the keratinocyte population and the expression levels of CLDN1 and CLDN4 in gingival epithelial cells, stimulated with VD3. CLDN 1 and 4 expression levels were down and upregulated, respectively, in the cells stimulated with VD3. Additionally, transepithelial electrical resistance (TEER) levels were increased in the stimulated cells when compared to the controls. These findings indicate that CLDN 4 may play a more important role in the TJ barrier than CLDN 1. Hence, the therapeutic effect of VD3 in skin and oral diseases may be regulated by the increase in the expression of CLDN 4.


Subject(s)
Cholecalciferol , Claudin-4 , Gingiva/cytology , Keratinocytes , Tight Junctions , Cholecalciferol/pharmacology , Claudin-1/genetics , Claudin-4/genetics , Humans
4.
J Comp Physiol B ; 193(1): 109-124, 2023 01.
Article in English | MEDLINE | ID: mdl-36436073

ABSTRACT

Marked blood flow (BF) changes mediated by the autonomic neural and humoral systems may be important for orofacial hemodynamics and functions. However, it remains questionable whether differences in the autonomic vasomotor responses mediated by neural and humoral systems exist in the orofacial area. This study examined whether there are differences in changes in the BF and vascular conductance (VC) between the masseter muscle and lower lip mediated by autonomic neural and humoral systems in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve elicited BF increases in the masseter (mainly cholinergic) and lower lip (mainly non-cholinergic), accompanied by an increase in arterial blood pressure (ABP), while cervical sympathetic trunk stimulation consistently decreased BF at both sites. The lingual nerve stimulation induced a biphasic change in the VC in the masseter, consisting of an initial decrease and a successive increase. This decrease in VC was positively correlated with changes in ABP and diminished by guanethidine. Cervical vagus nerve stimulation also induced BF increases at both sites; the increases were greater in the masseter than in the lower lip. Adrenal nerve stimulation and isoproterenol administration induced BF increases in the masseter but not in the lower lip. These results indicate that cholinergic parasympathetic-mediated hemodynamics evoked by trigeminal somatosensory inputs are closely related to ABP changes. The sympathetic nervous system, including the sympathoadrenal system and visceral inputs, may be more involved in hemodynamics in the muscles than in epithelial tissues in the orofacial area.


Subject(s)
Hemodynamics , Vasodilation , Rats , Animals , Vasodilation/physiology , Rats, Wistar , Guanethidine , Electric Stimulation
5.
Sci Rep ; 12(1): 382, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013397

ABSTRACT

The epithelial cell rests of Malassez (ERM) are essential in preventing ankylosis between the alveolar bone and the tooth (dentoalveolar ankylosis). Despite extensive research, the mechanism by which ERM cells suppress ankylosis remains uncertain; perhaps its varied population is to reason. Therefore, in this study, eighteen unique clones of ERM (CRUDE) were isolated using the single-cell limiting dilution and designated as ERM 1-18. qRT-PCR, ELISA, and western blot analyses revealed that ERM-2 and -3 had the highest and lowest amelogenin expression, respectively. Mineralization of human periodontal ligament fibroblasts (HPDLF) was reduced in vitro co-culture with CRUDE ERM, ERM-2, and -3 cells, but recovered when an anti-amelogenin antibody was introduced. Transplanted rat molars grown in ERM-2 cell supernatants produced substantially less bone than those cultured in other cell supernatants; inhibition was rescued when an anti-amelogenin antibody was added to the supernatants. Anti-Osterix antibody staining was used to confirm the development of new bones. In addition, next-generation sequencing (NGS) data were analysed to discover genes related to the distinct roles of CRUDE ERM, ERM-2, and ERM-3. According to this study, amelogenin produced by ERM cells helps to prevent dentoalveolar ankylosis and maintain periodontal ligament (PDL) space, depending on their clonal diversity.


Subject(s)
Amelogenin/metabolism , Cell Separation , Epithelial Cells/metabolism , Periodontal Ligament/metabolism , Tooth Ankylosis/metabolism , Amelogenin/genetics , Animals , Cell Proliferation , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Epithelial Cells/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , Humans , Male , Molar/metabolism , Molar/pathology , Molar/transplantation , Osteogenesis , Periodontal Ligament/pathology , Phenotype , Rats, Wistar , Sus scrofa , Tooth Ankylosis/genetics , Tooth Ankylosis/pathology , Tooth Ankylosis/prevention & control
6.
Anesth Prog ; 68(2): 90-93, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34185863

ABSTRACT

A nasogastric tube is often used along with a nasal endotracheal tube during oral surgery or dental treatment under general anesthesia. Although the insertion of a nasogastric tube is a simple procedure, it can be associated with complications that lead to potentially serious consequences. The knotting of a nasogastric tube around an endotracheal tube is rare. Here, we report a case in which the nasogastric tube became knotted around the nasal endotracheal tube in the nasopharynx. We compare this case with 4 previous similar cases and provide a theory of how the nasogastric tube might have become knotted.


Subject(s)
Intubation, Gastrointestinal , Nasopharynx , Humans , Intubation, Gastrointestinal/adverse effects , Intubation, Intratracheal/adverse effects , Nasopharynx/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL