Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Cell Proteomics ; 23(2): 100705, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135118

ABSTRACT

The microbe-associated molecular pattern flg22 is recognized in a flagellin-sensitive 2-dependent manner in root tip cells. Here, we show a rapid and massive change in protein abundance and phosphorylation state of the Arabidopsis root cell proteome in WT and a mutant deficient in heterotrimeric G-protein-coupled signaling. flg22-induced changes fall on proteins comprising a subset of this proteome, the heterotrimeric G protein interactome, and on highly-populated hubs of the immunity network. Approximately 95% of the phosphorylation changes in the heterotrimeric G-protein interactome depend, at least partially, on a functional G protein complex. One member of this interactome is ATBα, a substrate-recognition subunit of a protein phosphatase 2A complex and an interactor to Arabidopsis thaliana Regulator of G Signaling 1 protein (AtRGS1), a flg22-phosphorylated, 7-transmembrane spanning modulator of the nucleotide-binding state of the core G-protein complex. A null mutation of ATBα strongly increases basal endocytosis of AtRGS1. AtRGS1 steady-state protein level is lower in the atbα mutant in a proteasome-dependent manner. We propose that phosphorylation-dependent endocytosis of AtRGS1 is part of the mechanism to degrade AtRGS1, thus sustaining activation of the heterotrimeric G protein complex required for the regulation of system dynamics in innate immunity. The PP2A(ATBα) complex is a critical regulator of this signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Heterotrimeric GTP-Binding Proteins , RGS Proteins , Arabidopsis/metabolism , Phosphorylation , Arabidopsis Proteins/metabolism , Proteome/metabolism , RGS Proteins/chemistry , RGS Proteins/genetics , RGS Proteins/metabolism , Signal Transduction , Heterotrimeric GTP-Binding Proteins/metabolism , Flagellin/pharmacology , Flagellin/metabolism , Phosphoric Monoester Hydrolases/metabolism
2.
Int J Mol Sci ; 23(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35742988

ABSTRACT

Plant survival depends on adaptive mechanisms that constantly rely on signal recognition and transduction. The predominant class of signal discriminators is receptor kinases, with a vast member composition in plants. The transduction of signals occurs in part by a simple repertoire of heterotrimeric G proteins, with a core composed of α-, ß-, and γ-subunits, together with a 7-transmembrane Regulator G Signaling (RGS) protein. With a small repertoire of G proteins in plants, phosphorylation by receptor kinases is critical in regulating the active state of the G-protein complex. This review describes the in vivo detected phosphosites in plant G proteins and conservation scores, and their in vitro corresponding kinases. Furthermore, recently described outcomes, including novel arrestin-like internalization of RGS and a non-canonical phosphorylation switching mechanism that drives G-protein plasticity, are discussed.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Heterotrimeric GTP-Binding Proteins , RGS Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Phosphorylation , Phosphotransferases/metabolism , Plant Proteins/metabolism , Plants/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism
3.
Sci Signal ; 14(695)2021 08 10.
Article in English | MEDLINE | ID: mdl-34376571

ABSTRACT

In animals, endocytosis of a seven-transmembrane GPCR is mediated by arrestins to propagate or arrest cytoplasmic G protein-mediated signaling, depending on the bias of the receptor or ligand, which determines how much one transduction pathway is used compared to another. In Arabidopsis thaliana, GPCRs are not required for G protein-coupled signaling because the heterotrimeric G protein complex spontaneously exchanges nucleotide. Instead, the seven-transmembrane protein AtRGS1 modulates G protein signaling through ligand-dependent endocytosis, which initiates derepression of signaling without the involvement of canonical arrestins. Here, we found that endocytosis of AtRGS1 initiated from two separate pools of plasma membrane: sterol-dependent domains and a clathrin-accessible neighborhood, each with a select set of discriminators, activators, and candidate arrestin-like adaptors. Ligand identity (either the pathogen-associated molecular pattern flg22 or the sugar glucose) determined the origin of AtRGS1 endocytosis. Different trafficking origins and trajectories led to different cellular outcomes. Thus, in this system, compartmentation with its associated signalosome architecture drives biased signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arrestins , Endocytosis , GTP-Binding Proteins , RGS Proteins , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestins
SELECTION OF CITATIONS
SEARCH DETAIL