Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Am Chem Soc ; 146(1): 228-239, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38150013

ABSTRACT

The electrochemical transition metal-catalyzed cross-dehydrogenative reaction has emerged as a promising platform to achieve a sustainable and atom-economic organic synthesis that avoids hazardous oxidants and minimizes undesired byproducts and circuitous functional group operations. However, a poor mechanistic understanding still prevents the widespread adoption of this strategy. In this regard, we herein present an electrochemical palladium-catalyzed oxidative coupling strategy to access biaryls in the absence of a stoichiometric chemical oxidant. The robust palladaelectrocatalysis considerably suppresses the occurrence of homocoupling and oxygenation, being compatible even with electron-deficient arenes. Late-stage functionalization and Boscalid precursor synthesis further highlighted the practical importance of our electrolysis. Remarkably, mechanistic studies including the evaluation of the reaction order of each component by variable time normalization analysis (VTNA) and initial rate analysis, H/D exchange experiment, kinetic isotope effect, and stoichiometric organometallic experiments provided strong support for the involvement of transmetalation between two organopalladium complexes in the turnover limiting step. Therefore, matching the concentrations or lifetimes of two distinct organopalladium intermediates is revealed to be a pivot to the success of electrooxidative catalysis. Moreover, the presence of cationic copper(II) seems to contribute to the stabilization of the palladium(0) catalyst instead of playing a role in the oxidation of the catalyst.

2.
J Am Chem Soc ; 146(34): 24105-24113, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39143928

ABSTRACT

The quest for sustainable strategies in molecular synthesis has spurred the emergence of photocatalysis as a particularly powerful technique. In recent years, the application of photocatalysis in this context has greatly promoted the development of asymmetric catalysis. Despite the impressive advances, enantioselective photoinduced strong arene C-H activations by cobalt catalysis remain unexplored. Herein, we report a strategy that merges organic photoredox catalysis and enantioselective cobalt-catalyzed C-H activation, enabling the regio- and stereoselective dual functionalization of indoles in an enantioselective fashion. Thereby, the assembly of various chiral indolo[2,3-c]isoquinolin-5-ones was realized with high enantioselectivities of up to 99%. The robustness of the cobaltaphotoredox catalysis was demonstrated through enantioselective C-H activation and annulations in a continuous flow to provide straightforward access to central and axially chiral molecules.

3.
Gastroenterology ; 165(3): 696-716, 2023 09.
Article in English | MEDLINE | ID: mdl-37263305

ABSTRACT

BACKGROUND & AIMS: Genetic ancestry or racial differences in health outcomes exist in diseases associated with systemic inflammation (eg, COVID-19). This study aimed to investigate the association of genetic ancestry and race with acute-on-chronic liver failure (ACLF), which is characterized by acute systemic inflammation, multi-organ failure, and high risk of short-term death. METHODS: This prospective cohort study analyzed a comprehensive set of data, including genetic ancestry and race among several others, in 1274 patients with acutely decompensated cirrhosis who were nonelectively admitted to 44 hospitals from 7 Latin American countries. RESULTS: Three hundred ninety-five patients (31.0%) had ACLF of any grade at enrollment. Patients with ACLF had a higher median percentage of Native American genetic ancestry and lower median percentage of European ancestry than patients without ACLF (22.6% vs 12.9% and 53.4% vs 59.6%, respectively). The median percentage of African genetic ancestry was low among patients with ACLF and among those without ACLF. In terms of race, a higher percentage of patients with ACLF than patients without ACLF were Native American and a lower percentage of patients with ACLF than patients without ACLF were European American or African American. In multivariable analyses that adjusted for differences in sociodemographic and clinical characteristics, the odds ratio for ACLF at enrollment was 1.08 (95% CI, 1.03-1.13) with Native American genetic ancestry and 2.57 (95% CI, 1.84-3.58) for Native American race vs European American race CONCLUSIONS: In a large cohort of Latin American patients with acutely decompensated cirrhosis, increasing percentages of Native American ancestry and Native American race were factors independently associated with ACLF at enrollment.


Subject(s)
Acute-On-Chronic Liver Failure , COVID-19 , Humans , Latin America/epidemiology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , Liver Cirrhosis/genetics , Prospective Studies , COVID-19/complications , Acute-On-Chronic Liver Failure/diagnosis , Acute-On-Chronic Liver Failure/epidemiology , Acute-On-Chronic Liver Failure/genetics , Inflammation/complications , Prognosis
4.
Angew Chem Int Ed Engl ; 63(41): e202407384, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38959168

ABSTRACT

Skeletal molecular editing gained considerable recent momentum and emerged as a uniquely powerful tool for late-stage diversifications. Thus far, superstoichiometric amounts of costly hypervalent iodine(III) reagents were largely required for skeletal indole editing. In contrast, we herein show that electricity enables sustainable nitrogen atom insertion reactions to give bio-relevant quinazoline scaffolds without stoichiometric chemical redox-waste product. The transition metal-free electro-editing was enabled by the oxygen reduction reaction (ORR) and proved robust on scale, while tolerating a variety of valuable functional groups.

5.
Chemistry ; 29(6): e202202834, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36206170

ABSTRACT

Recent years have witnessed a boom of machine learning (ML) applications in chemistry, which reveals the potential of data-driven prediction of synthesis performance. Digitalization and ML modelling are the key strategies to fully exploit the unique potential within the synergistic interplay between experimental data and the robust prediction of performance and selectivity. A series of exciting studies have demonstrated the importance of chemical knowledge implementation in ML, which improves the model's capability for making predictions that are challenging and often go beyond the abilities of human beings. This Minireview summarizes the cutting-edge embedding techniques and model designs in synthetic performance prediction, elaborating how chemical knowledge can be incorporated into machine learning until June 2022. By merging organic synthesis tactics and chemical informatics, we hope this Review can provide a guide map and intrigue chemists to revisit the digitalization and computerization of organic chemistry principles.

6.
J Org Chem ; 88(23): 16539-16546, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37947111

ABSTRACT

This report describes the use of a simple Pd/NBE catalytic system to achieve ortho C-H oxylation and phosphonylation and other functionalizations of aryl iodide through templated conversion reactions. Dimethylamine is introduced in the ortho-site of aryl iodide through C-H amination, and aryl dimethylamine is quickly converted to methyl quaternary ammonium salt precipitation. Methyl quaternary ammonium salt avoids Hofmann elimination in subsequent functionalization. This method solves various ortho functionalization reactions of aryl iodide that have not been achieved for a long time in the field of Pd/NBE chemistry indirectly.

7.
J Am Chem Soc ; 144(2): 798-806, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35001624

ABSTRACT

Atropoisomeric (hetero)biaryls are scaffolds with increasing importance in the pharmaceutical and agrochemical industries. Although it is the most obvious disconnection to construct such compounds, the direct enantioselective C-H arylation through the concomitant induction of the chiral information remains extremely challenging and uncommon. Herein, the unprecedented earth-abundant 3d-metal-catalyzed atroposelective direct arylation is reported, furnishing rare atropoisomeric C2-arylated indoles. Kinetic studies and DFT computation revealed an uncommon mechanism for this asymmetric transformation, with the oxidative addition being the rate- and enantio-determining step. Excellent stereoselectivities were reached (up to 96% ee), while using an unusual N-heterocyclic carbene ligand bearing an essential remote substituent. Attractive dispersion interactions along with positive C-H---π interactions exerted by the ligand were identified as key factors to guarantee the excellent enantioselection.

8.
Angew Chem Int Ed Engl ; 61(47): e202212595, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36108175

ABSTRACT

Enantioselective C-H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)-catalyzed enantioselective C-H activation has thus far largely proven elusive. In contrast, we herein report on a ruthenium(II)-catalyzed highly regio-, diastereo- and enantioselective C-H alkylation. The key to success was represented by the identification of novel C2-symmetric chiral imidazolidine carboxylic acids (CICAs), which are easily accessible in a one-pot fashion, as highly effective chiral ligands. This ruthenium/CICA system enabled the efficient installation of central and axial chirality, and featured excellent branched to linear ratios with generally >20 : 1 dr and up to 98 : 2 er. Mechanistic studies by experiment and computation were carried out to understand the catalyst mode of action.

9.
J Org Chem ; 86(22): 15935-15945, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34077219

ABSTRACT

The oxidative intermolecular nitrogenation of C(sp3)-H bonds represents one of the most straightforward strategies to construct nitrogen-containing molecules. However, a sacrificial chemical oxidant is generally required. Herein, we describe electrochemical oxidative intermolecular allylic C(sp3)-H aminations in an undivided cell by electric current. The cross-dehydrogenative amination proceeded efficiently with ample scope under metal- and chemical oxidant-free reaction conditions, giving molecular H2 as the only byproduct.

10.
Angew Chem Int Ed Engl ; 60(12): 6419-6424, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33471952

ABSTRACT

Electrooxidative annulations involving mild transition metal-catalyzed C-H activation have emerged as a transformative strategy for the rapid construction of five- and six-membered heterocycles. In contrast, we herein describe the first electrochemical metal-catalyzed [5+2] cycloadditions to assemble valuable seven-membered benzoxepine skeletons by C-H/O-H activation. The efficient alkyne annulation featured ample substrate scope, using electricity as the only oxidant. Mechanistic studies provided strong support for a rhodium(III/I) regime, involving a benzoxepine-coordinated rhodium(I) sandwich complex as the catalyst resting state, which was re-oxidized to rhodium(III) by anodic oxidation.

11.
Angew Chem Int Ed Engl ; 60(24): 13264-13270, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33651910

ABSTRACT

Rhodium-electrocatalyzed arene C-H oxygenation by weakly O-coordinating amides and ketones have been established by bimetallic electrocatalysis. Likewise, diverse dihydrooxazinones were selectively accessed by the judicious choice of current, enabling twofold C-H functionalization. Detailed mechanistic studies by experiment, mass spectroscopy and cyclovoltammetric analysis provided support for an unprecedented electrooxidation-induced C-H activation by a bimetallic rhodium catalysis manifold.

12.
Angew Chem Int Ed Engl ; 59(27): 10955-10960, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32154625

ABSTRACT

The merger of cobalt-catalyzed C-H activation and electrosynthesis provides new avenues for resource-economical molecular syntheses, unfortunately their reaction mechanisms remain poorly understood. Herein, we report the identification and full characterization of electrochemically generated high-valent cobalt(III/IV) complexes as crucial intermediates in electrochemical cobalt-catalyzed C-H oxygenations. Detailed mechanistic studies provided support for an oxidatively-induced reductive elimination via highly-reactive cobalt(IV) intermediates. These key insights set the stage for unprecedented cobaltaelectro two-fold C-H/C-H activation.

13.
Angew Chem Int Ed Engl ; 59(31): 12842-12847, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32329560

ABSTRACT

The chemical use of CO2 as an inexpensive, nontoxic C1 synthon is of utmost topical interest in the context of carbon capture and utilization (CCU). We present the merger of cobalt catalysis and electrochemical synthesis for mild catalytic carboxylations of allylic chlorides with CO2 . Styrylacetic acid derivatives were obtained with moderate to good yields and good functional group tolerance. The thus-obtained products are useful as versatile synthons of γ-arylbutyrolactones. Cyclic voltammetry and in operando kinetic analysis were performed to provide mechanistic insights into the electrocatalytic carboxylation with CO2 .

14.
Angew Chem Int Ed Engl ; 59(32): 13451-13457, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32243685

ABSTRACT

Asymmetric pallada-electrocatalyzed C-H olefinations were achieved through the synergistic cooperation with transient directing groups. The electrochemical, atroposelective C-H activations were realized with high position-, diastereo-, and enantio-control under mild reaction conditions to obtain highly enantiomerically-enriched biaryls and fluorinated N-C axially chiral scaffolds. Our strategy provided expedient access to, among others, novel chiral BINOLs, dicarboxylic acids and helicenes of value to asymmetric catalysis. Mechanistic studies by experiments and computation provided key insights into the catalyst's mode of action.

15.
J Am Chem Soc ; 141(43): 17198-17206, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31549815

ABSTRACT

A flow-metallaelectro-catalyzed C-H activation was realized in terms of robust rhodaelectro-catalyzed alkyne annulations. To this end, a modular electro-flow cell with a porous graphite felt anode was designed to ensure efficient turnover. Thereby, a variety of C-H/N-H functionalizations proved amenable for alkyne annulations with high levels of regioselectivity and functional group tolerance, viable in both an inter- or intramolecular manner. The electro-flow C-H activation allowed easy scale up, while in-operando kinetic analysis was accomplished by online flow-NMR spectroscopy. Mechanistic studies suggest an oxidatively induced reductive elimination pathway on rhodium(III) in an electrocatalytic regime.

16.
Chemistry ; 25(71): 16382-16389, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31658385

ABSTRACT

Despite major advances, organometallic C-H transformations are dominated by precious 5d and 4d transition metals, such as iridium, palladium and rhodium. In contrast, the unique potential of less toxic Earth-abundant 3d metals has been underexplored. While iron is the most naturally abundant transition metal, its use in oxidative, organometallic C-H activation has faced major limitations due to the need for superstoichiometric amounts of corrosive, cost-intensive DCIB as the sacrificial oxidant. To fully address these restrictions, we describe herein the unprecedented merger of electrosynthesis with iron-catalyzed C-H activation through oxidation-induced reductive elimination. Thus, ferra- and manganaelectro-catalyzed C-H arylations were accomplished at mild reaction temperatures with ample scope by the action of sustainable iron catalysts, employing electricity as a benign oxidant.

17.
Angew Chem Int Ed Engl ; 58(37): 12874-12878, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31207070

ABSTRACT

An iron-catalyzed C-H/N-H alkyne annulation was realized by using a customizable clickable triazole amide under exceedingly mild reaction conditions. A unifying mechanistic approach combining experiment, spectroscopy, kinetics, and computation provided strong support for facile C-H activation by a ligand-to-ligand hydrogen transfer (LLHT) mechanism. Combined Mössbauer spectroscopic analysis and DFT calculations were indicative of high-spin iron(II) species as the key intermediates in the C-H activation manifold.

18.
Angew Chem Int Ed Engl ; 58(19): 6342-6346, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30835907

ABSTRACT

Rapid access to structurally diversified polycyclic aromatic hydrocarbons (PAHs) in a controlled manner is of key significance in materials sciences. Herein, we describe a strategy featuring two distinct electrocatalytic C-H transformations for the synthesis of novel nonplanar PAHs. The combination of rhodaelectrooxidative C-H activation/[2+2+2] alkyne annulation of easily accessible boronic acids with electrocatalytic cyclodehydrogenation provided modular access to diversely substituted PAHs with electricity as a sustainable oxidant. The unique molecular topology as well as the photophysical and electronic properties of the thus obtained PAHs were fully analyzed. The unique power of this metallaelectrocatalysis method was demonstrated by the chemoselective assembly of synthetically useful iodo-substituted PAHs.

19.
J Am Chem Soc ; 140(25): 7913-7921, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29812927

ABSTRACT

Electrochemical oxidative C-H/N-H activations have been accomplished with a versatile cobalt catalyst in terms of [4 + 2] annulations of internal alkynes. The electro-oxidative C-H activation manifold proved viable with an undivided cell setup under exceedingly mild reaction conditions at room temperature using earth-abundant cobalt catalysts. The electrochemical cobalt catalysis prevents the use of transition metal oxidants in C-H activation catalysis, generating H2 as the sole byproduct. Detailed mechanistic studies provided strong support for a facile C-H cobaltation by an initially formed cobalt(III) catalyst. The subsequent alkyne migratory insertion was interrogated by mass spectrometry and DFT calculations, providing strong support for a facile C-H activation and the formation of a key seven-membered cobalta(III) cycle in a regioselective fashion. Key to success for the unprecedented use of internal alkynes in electrochemical C-H/N-H activations was represented by the use of N-2-pyridylhydrazides, for which we developed a traceless electrocleavage strategy by electroreductive samarium catalysis at room temperature.

20.
Chemistry ; 24(49): 12784-12789, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-29901828

ABSTRACT

Catalyst- and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3 )-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant.

SELECTION OF CITATIONS
SEARCH DETAIL