Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Glob Chang Biol ; 25(9): 2915-2930, 2019 09.
Article in English | MEDLINE | ID: mdl-31298814

ABSTRACT

Climate warming and human landscape transformation during the Holocene resulted in environmental changes for wild animals. The last remnants of the European Pleistocene megafauna that survived into the Holocene were particularly vulnerable to changes in habitat. To track the response of habitat use and foraging of large herbivores to natural and anthropogenic changes in environmental conditions during the Holocene, we investigated carbon (δ13 C) and nitrogen (δ15 N) stable isotope composition in bone collagen of moose (Alces alces), European bison (Bison bonasus) and aurochs (Bos primigenius) in Central and Eastern Europe. We found strong variations in isotope compositions in the studied species throughout the Holocene and diverse responses to changing environmental conditions. All three species showed significant changes in their δ13 C values reflecting a shift of foraging habitats from more open in the Early and pre-Neolithic Holocene to more forest during the Neolithic and Late Holocene. This shift was strongest in European bison, suggesting higher plasticity, more limited in moose, and the least in aurochs. Significant increases of δ15 N values in European bison and moose are evidence of a diet change towards more grazing, but may also reflect increased nitrogen in soils following deglaciation and global temperature increases. Among the factors explaining the observed isotope variations were time (age of samples), longitude and elevation in European bison, and time, longitude and forest cover in aurochs. None of the analysed factors explained isotope variations in moose. Our results demonstrate the strong influence of natural (forest expansion) and anthropogenic (deforestation and human pressure) changes on the foraging ecology of large herbivores, with forests playing a major role as a refugial habitat since the Neolithic, particularly for European bison and aurochs. We propose that high flexibility in foraging strategy was the key for survival of large herbivores in the changing environmental conditions of the Holocene.


Subject(s)
Bison , Herbivory , Animals , Cattle , Ecosystem , Europe , Europe, Eastern
2.
Proc Natl Acad Sci U S A ; 105(2): 600-4, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18187577

ABSTRACT

Previous bone collagen carbon and nitrogen isotopic studies of Late Pleistocene European cave bears (Ursus spelaeus) have shown that these bears frequently had low nitrogen isotope values, similar to those of herbivores and indicating either unusual physiology related to hibernation or a herbivorous diet. Isotopic analysis of animal bone from the Pestera cu Oase (Cave with Bones), Romania, shows that most of its cave bears had higher nitrogen isotope values than the associated herbivores and were, therefore, omnivorous. The Oase bears are securely identified as cave bears by both their morphology and DNA sequences. Although many cave bear populations may have behaved like herbivores, the Oase isotopic data demonstrate that cave bears were capable of altering their diets to become omnivores or even carnivores. These data therefore broaden the dietary profile of U. spelaeus and raise questions about the nature of the carnivore guild in Pleistocene Europe.


Subject(s)
Nitrogen Isotopes/analysis , Ursidae/physiology , Animal Nutritional Physiological Phenomena , Animals , Biological Evolution , Bone and Bones/pathology , DNA/chemistry , DNA, Mitochondrial/metabolism , Diet , Female , Fossils , Male , Molecular Sequence Data , Paleodontology/methods , Paleontology/methods , Romania
3.
Curr Biol ; 31(8): 1771-1779.e7, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33592193

ABSTRACT

Palaeogenomes provide the potential to study evolutionary processes in real time, but this potential is limited by our ability to recover genetic data over extended timescales.1 As a consequence, most studies so far have focused on samples of Late Pleistocene or Holocene age, which covers only a small part of the history of many clades and species. Here, we report the recovery of a low coverage palaeogenome from the petrous bone of a ∼360,000 year old cave bear from Kudaro 1 cave in the Caucasus Mountains. Analysis of this genome alongside those of several Late Pleistocene cave bears reveals widespread mito-nuclear discordance in this group. Using the time interval between Middle and Late Pleistocene cave bear genomes, we directly estimate ursid nuclear and mitochondrial substitution rates to calibrate their respective phylogenies. This reveals post-divergence mitochondrial transfer as the dominant factor explaining their mito-nuclear discordance. Interestingly, these transfer events were not accompanied by large-scale nuclear introgression. However, we do detect additional instances of nuclear admixture among other cave bear lineages, and between cave bears and brown bears, which are not associated with mitochondrial exchange. Genomic data obtained from the Middle Pleistocene cave bear petrous bone has thus facilitated a revised evolutionary history of this extinct megafaunal group. Moreover, it suggests that petrous bones may provide a means of extending both the magnitude and time depth of palaeogenome retrieval over substantial portions of the evolutionary histories of many mammalian clades.


Subject(s)
Ursidae , Animals , DNA, Mitochondrial , Fossils , Genome , Genomics , Phylogeny , Ursidae/genetics
4.
Ecol Evol ; 9(10): 5891-5905, 2019 May.
Article in English | MEDLINE | ID: mdl-31161006

ABSTRACT

The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid-Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter-specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.

SELECTION OF CITATIONS
SEARCH DETAIL