Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mol Cell Biochem ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884847

ABSTRACT

Mitochondria are pivotal in the modulation of macrophage activation, differentiation, and survival. Furthermore, macrophages are instrumental in the onset and progression of cardiovascular diseases. Hence, it is imperative to investigate the role of mitochondria within macrophages in the context of cardiovascular disease. In this review, we provide an updated description of the origin and classification of cardiac macrophages and also focused on the relationship between macrophages and mitochondria in cardiovascular diseases with respect to (1) proinflammatory or anti-inflammatory macrophages, (2) macrophage apoptosis, (3) macrophage pyroptosis, and (4) macrophage efferocytosis. Clarifying the relationship between mitochondria and macrophages can aid the exploration of novel therapeutic strategies for cardiovascular disease.

2.
Mol Cell Probes ; 73: 101947, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122948

ABSTRACT

Airway fibrosis is among the pathological manifestations of benign central airway obstruction noted in the absence of effective treatments and requires new drug targets to be developed. Slit guidance ligand 2-roundabout guidance receptor 1 (Slit2-Robo1) is involved in fibrosis and organ development. However, its significance in airway fibrosis has not yet been reported. The study explored how the recombinant protein Slit2 functions in transforming growth factor-ß1 (TGF-ß1)-mediated airway fibrosis in vivo and in vitro. In this study, Slit2 expression initially increased in the tracheal granulation tissues of patients with tracheobronchial stenosis but decreased in the fibrotic tissue. In primary rat tracheal fibroblasts (RTFs), recombinant Slit2 inhibited the expression of extracellular matrices such as Timp1, α-SMA, and COL1A2, whereas recombinant TGF-ß1 promoted the expression of Robo1, α-SMA, and COL1A2. Slit2 and TGF-ß1 played a mutual inhibitory role in RTFs. Slit2 supplementation and Robo1 downregulation inhibited excessive extracellular matrix (ECM) deposition induced by TGF-ß1 in RTFs via the TGF-ß1/Smad3 pathway. Ultimately, exogenous Slit2 and Robo1 knockdown-mediated attenuation of airway fibrosis were validated in a trauma-induced rat airway obstruction model. These findings demonstrate that recombinant Slit2 alleviated pathologic tracheobronchial healing by attenuating excessive ECM deposition. Slit2-Robo1 is an attractive target for further exploring the mechanisms and treatment of benign central airway obstruction.


Subject(s)
Airway Obstruction , Pulmonary Fibrosis , Animals , Humans , Rats , Airway Obstruction/metabolism , Fibroblasts/metabolism , Fibrosis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pulmonary Fibrosis/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Transforming Growth Factor beta1/pharmacology
3.
Biochem Biophys Res Commun ; 664: 108-116, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37141638

ABSTRACT

Pancreatic cancer is an extremely aggressive malignancy with a very disappointing prognosis. Neuroglobin (NGB), a member of the globin family, has been demonstrated to have a significant role in a variety of tumor forms. The possible role of NGB as a tumor suppressor gene in pancreatic cancer was investigated in this work. Information from the public dataset TCGA combined with GTEx was used to analyze the finding that NGB was commonly downregulated in pancreatic cancer cell lines and tissues, correlating with patient age and prognosis. The expression of NGB in pancreatic cancer was investigated via RT-PCR, qRT-PCR, and Western blot experiments. In-vitro and in-vivo assays, NGB elicited cell cycle arrest in the S phase and apoptosis, hindered migration and invasion, reversed the EMT process, and suppressed cell proliferation and development. The mechanism of action of NGB was predicted via bioinformatics analysis and validated using Western blot and co-IP experiments revealed that NGB inhibited the EGFR/AKT/ERK pathway by binding to and reducing expression of GNAI1 and p-EGFR. In addition, pancreatic cancer cells overexpressing NGB showed increased drug sensitivity to gefitinib (EGFR-TKI). In conclusion, NGB inhibits pancreatic cancer progression by specifically targeting the GNAI1/EGFR/AKT/ERK signaling axis.


Subject(s)
Neuroglobin , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Cell Line, Tumor , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroglobin/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism
4.
Exp Cell Res ; 421(2): 113410, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36336027

ABSTRACT

Benign tracheobronchial stenosis (BTS) is a fatal and incurable disease. Epithelial repair and matrix reconstruction play an important role in the wound repair process. If the interstitial context is not restored and stabilized in time, it can lead to pathological fibrosis. Here we attempted to identify cytokines that are involved in promoting wound repair. Growth differentiation factor 15 (GDF15) is a cytokine secreted by tracheal epithelial cells, which is indispensable for the growth of epithelial cells and inhibits the overgrowth of fibroblasts. GDF15 can counteract transforming growth factor-ß (TGFß1) stimulation of epithelial-mesenchymal transition (EMT) in tracheal epithelial cells and inhibit fibroblast activation via the TGFß1-SMAD2/3 pathway. In a rat model of tracheal stenosis, GDF15 supplementation alleviated the degree of tracheal stenosis. These results suggest that GDF15 prevents fibroblast hyperactivation and promotes epithelial repair in injured trachea. GDF15 may be a potential therapy to improve benign tracheobronchial stenosis.


Subject(s)
Epithelial-Mesenchymal Transition , Tracheal Stenosis , Animals , Rats , Constriction, Pathologic/metabolism , Constriction, Pathologic/pathology , Cytokines/metabolism , Fibroblasts/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Tracheal Stenosis/metabolism , Tracheal Stenosis/pathology , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism
5.
Immun Inflamm Dis ; 12(4): e1237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577984

ABSTRACT

BACKGROUND: Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. CXCL4 is a chemokine that has been reported to have pro-inflammatory and profibrotic functions. The exact role of CXCL4 in cardiac fibrosis remains unclear. METHODS: Viral myocarditis (VMC) models were induced by intraperitoneal injection of Coxsackie B Type 3 (CVB3). In vivo, CVB3 (100 TCID50) and CVB3-AMG487 (CVB3: 100 TCID50; AMG487: 5 mg/kg) combination were administered in the VMC and VMC+AMG487 groups, respectively. Hematoxylin and eosin staining, severity score, Masson staining, and immunofluorescence staining were performed to measure myocardial morphology in VMC. Enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were performed to quantify inflammatory factors (IL-1ß, IL-6, TNF-α, and CXCL4). Aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine kinase-myocardial band (CK-MB) levels were analyzed by commercial kits. CXCL4, CXCR3B, α-SMA, TGF-ß1, Collagen I, and Collagen III were determined by Western blot and immunofluorescence staining. RESULTS: In vivo, CVB3-AMG487 reduced cardiac injury, α-SMA, Collagen I and Collagen III levels, and collagen deposition in VMC+AMG487 group. Additionally, compared with VMC group, VMC+AMG group decreased the levels of inflammatory factors (IL-1ß, IL-6, and TNF-α). In vitro, CXCL4/CXCR3B axis activation TGF-ß1/Smad2/3 pathway promote mice cardiac fibroblasts differentiation. CONCLUSION: CXCL4 acts as a profibrotic factor in TGF-ß1/Smad2/3 pathway-induced cardiac fibroblast activation and ECM synthesis, and eventually progresses to cardiac fibrosis. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.


Subject(s)
Acetamides , Coxsackievirus Infections , Myocarditis , Pyrimidinones , Mice , Animals , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha , Interleukin-6 , Collagen , Fibrosis
6.
Cell Signal ; 120: 111197, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697447

ABSTRACT

OBJECTIVES: The clinical T1 stage solid lung cancer with metastasis is a serious threat to human life and health. In this study, we performed RNA sequencing on T1 advanced-stage lung cancer and adjacent tissues to identify a novel biomarker and explore its roles in lung cancer. METHODS: Quantitative reversed-transcription PCR, reverse transcription PCR and Western blot, MSP and Methtarget were utilized to evaluate FIBIN expression levels at both the transcriptional and protein levels as well as its methylation status. Differential target protein was evaluated for relative and absolute quantitation by isobaric tags. Co-IP was performed to detect the interactions between target protein. Precise location and expression levels of target proteins were revealed by immunofluorescence staining and component protein extraction using specific kits, respectively. RESULTS: We reported that FIBIN was frequently silenced due to promoter hypermethylation in lung cancer. Additionally, both in vitro and in vivo experiments confirmed the significant anti-proliferation and anti-metastasis capabilities of FIBIN. Mechanistically, FIBIN decreased the nuclear accumulation of ß-catenin by reducing the binding activity of GSK3ß with ANXA2 while promoting interaction between GSK3ß and ß-catenin. CONCLUSION: Our findings firstly identify FIBIN is a tumor suppressor, frequently silenced due to promoter hypermethylation. FIBIN may serve as a predictive biomarker for progression or metastasis among early-stage lung cancer patients.


Subject(s)
Annexin A2 , Carcinoma, Non-Small-Cell Lung , DNA Methylation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Annexin A2/metabolism , Annexin A2/genetics , Animals , Mice , Cell Line, Tumor , Cell Proliferation , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mice, Nude , Neoplasm Metastasis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , Promoter Regions, Genetic/genetics , Female , Mice, Inbred BALB C , A549 Cells , Cell Movement
7.
Int Immunopharmacol ; 123: 110657, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531826

ABSTRACT

Tracheal injury is a challenging emergency condition that is characterized by the abnormal repair of the trachea. GATA6, a well-established transcription factor, plays a crucial role in tissue injury and epithelial regenerative repair. This study aims to evaluate the role of GATA6 in NF-κB-mediated NLRP3 inflammasome activation and pyroptosis after tracheal injury. Tracheal tissues and serum samples were collected from clinical patients and a rat model of tracheal injury. Upon GATA6 knockdown or overexpression, BEAS-2B and rat tracheal epithelial (RTE) cells were treated with lipopolysaccharides and nigericin before being co-cultured with primary tracheal fibroblasts. The changes of NLRP3 inflammasome activation and pyroptosis and their underlying mechanisms were detected. Additionally, the role of GATA6 downregulation in tracheal injury was verified in rats. GATA6 expression and NLRP3 inflammasome activation were upregulated following tracheal injury in the epithelium of granulation tissues. GATA6 silencing inhibited NLRP3 priming, NLRP3 inflammasome activation, and pyroptosis in BEAS-2B and RTE cells. Mechanistically, GATA6 was determined to have bound to the promoter region of NLRP3 and synergistically upregulated NLRP3 promoter activity with NF-κB. Furthermore, GATA6 overexpression promoted epithelial-mesenchymal transition via modulating the NF-κB/NLRP3 pathway. Epithelial NLRP3 inflammasome activation triggered ECM production in fibroblasts, which was suppressed by GATA6 knockdown and induced by GATA6 overexpression. Finally, the downregulation of GATA6 alleviated NLRP3 inflammasome-mediated pyroptosis induced by tracheal injury in rats, thereby reducing tracheal stenosis, inflammation, and fibrosis. GATA6 promotes fibrotic repair in tracheal injury through NLRP3 inflammasome-mediated epithelial pyroptosis, making it a potential biological therapeutic target for tracheal injury.


Subject(s)
GATA6 Transcription Factor , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Humans , Rats , Fibrosis , GATA6 Transcription Factor/genetics , Inflammasomes/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Trachea/injuries , Trachea/pathology
8.
Cell Signal ; 105: 110593, 2023 05.
Article in English | MEDLINE | ID: mdl-36682592

ABSTRACT

Tracheal fibrosis is a key abnormal repair process leading to fatal stenosis, characterized by excessive fibroblast activation and extracellular matrix (ECM) deposition. GATA6, a zinc finger-containing transcription factor, is involved in fibroblast activation, while its role in tracheal fibrosis remains obscure. The present study investigated the potential role of GATA6 as a novel regulator of tracheal fibrosis. It was found that GATA6 and α-smooth muscle actin (α-SMA) were obviously increased in tracheal fibrotic granulations and in TGFß1-treated primary tracheal fibroblasts. GATA6 silencing inhibited TGFß1-stimulated fibroblast proliferation and ECM synthesis, promoted cell apoptosis, and inactivated Wnt/ß-catenin pathway, whereas GATA6 overexpression showed the reverse effects. SKL2001, an agonist of Wnt/ß-catenin signaling, restored collagen1a1 and α-SMA expression which was suppressed by GATA6 silencing. Furthermore, in vivo, knockdown of GATA6 ameliorated tracheal fibrosis, as manifested by reduced tracheal stenosis and ECM deposition. GATA6 inhibition in rat tracheas also impaired granulation proliferation, increased apoptosis, and inactivated Wnt/ß-catenin pathway. In conclusion, our findings indicate that GATA6 triggers fibroblast activation, cell proliferation, and apoptosis resistance in tracheal fibrosis via the Wnt/ß-catenin signaling pathway. Targeting GATA6 may represent a promising therapeutic approach for tracheal fibrosis.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Animals , Rats , beta Catenin/metabolism , Fibroblasts/metabolism , Fibrosis , Trachea/metabolism
9.
Membranes (Basel) ; 12(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36557176

ABSTRACT

In this work, a dense and acid-resistant beta zeolite membrane was applied to improve the esterification of citric acid and n-butanol, for the first time. Through the continuous removal of the by-product water via pervaporation (PV), the conversion of citric acid was significantly enhanced from 71.7% to 99.2% using p-Toluenesulfonic acid (PTSA) as catalyst. PTSA was a well-known strong acid, and the membrane kept almost no change after PV-esterification, indicating the superior acid resistance of beta zeolite membrane. Compared to the use of acid-resistant MOR zeolite membrane by PV-esterification, a consistently higher conversion of citric acid was obtained using a high-flux beta zeolite membrane. The results showed that high water permeation on the beta zeolite membrane, with good acid resistance, had a strong promoting effect on esterification, leading to an improved conversion. In addition, the citric acid conversion of 97.7% could still be achieved by PV-esterification at a low reaction temperature of 388 K.

10.
Int J Biol Sci ; 18(8): 3178-3193, 2022.
Article in English | MEDLINE | ID: mdl-35637950

ABSTRACT

Mesangioproliferative glomerulonephritis (MsPGN) is a common human kidney disease. Rat Thy-1 nephritis (Thy-1N) is an animal model widely used for the study of MsPGN. Thy-1N is not only sublytic C5b-9-dependent, but also related to pro-inflammatory cytokine production and macrophage (Mφ) accumulation in rat renal tissues. In this study, we found that the expression or phosphorylation of chemokine CCL3/4, CD68 (Mφ marker), IRF-8, PKC-α and NF-κB-p65 (p65) were all up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the glomerular mesangial cells (GMCs) upon sublytic C5b-9 stimulation (in vitro). Further experiments in vitro revealed that the phosphorylated PKC-α (p-PKC-α) could promote p65 phosphorylation, and then p-p65 enhanced IRF-8 expression through binding to IRF-8 promotor (-591 ~ -582 nt and -299 ~ -290 nt). Additionally, up-regulation or silencing of IRF-8 gene promoted or reduced CCL3/4 production, and then regulated Mφ chemotaxis. The underlying mechanism involved in IRF-8 binding to CCL3 promoter (-249 ~ -236 nt), which resulted in CCL3 gene transcription. The experiments in vivo showed that knockdown of renal PKC-α, p65, IRF-8 and CCL3/4 genes could inhibit CCL3/4 production, Mφ accumulation, GMC proliferation and proteinuria of Thy-1N rats. Furthermore, p-PKC-α, p-p65, IRF-8, CCL3/4 expression and Mφ accumulation were also increased in the renal tissues of MsPGN patients. Collectively, these findings indicate that sublytic C5b-9 induces CCL3/4 production and Mφ accumulation via PKC-α/p65/IRF-8 axis, and finally aggravates the pathological changes of MsPGN.


Subject(s)
Complement Membrane Attack Complex , Glomerulonephritis , Macrophages , Animals , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Complement Membrane Attack Complex/metabolism , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , Humans , Interferon Regulatory Factors/metabolism , Macrophages/metabolism , Protein Kinase C-alpha/metabolism , Rats , Transcription Factor RelA/metabolism
11.
Epigenomics ; 12(20): 1793-1810, 2020 10.
Article in English | MEDLINE | ID: mdl-33016107

ABSTRACT

Aim: To explore the biological functions and clinical significance of CAVIN2 in lung cancer. Materials & methods: Methylation-specific PCR was used to measure promoter methylation of CAVIN2. The function of CAVIN2 was tested by Cell Counting Kit-8, colony formation, Transwell, flow cytometric analysis, acridine orange/ethidium bromide, chemosensitivity assay and xenograft assay. Results: CAVIN2 is significantly downregulated by promoter methylation in lung cancer. CAVIN2 overexpression inhibits lung cancer cell migration and invasion. Furthermore, ectopic expression of CAVIN2 inhibits cell proliferation in vivo and in vitro by inducing G2/M cell cycle arrest, which sensitizes the chemosensitivity of lung cancer cells to paclitaxel and 5-fluorouracil, but not cisplatin. Conclusion: CAVIN2 is a tumor suppressor in non-small-cell lung cancer and can sensitize lung cancer cells to paclitaxel and 5-fluorouracil.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA Methylation , Fluorouracil/therapeutic use , Gene Silencing , Lung Neoplasms/genetics , Paclitaxel/therapeutic use , Phosphate-Binding Proteins/genetics , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , CpG Islands , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , G2 Phase Cell Cycle Checkpoints , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Mice, Nude , Neoplasm Invasiveness , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/physiology , Promoter Regions, Genetic
12.
Clin Epigenetics ; 12(1): 41, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32138771

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma tends to present at an advanced stage because the primary anatomic site is located in a less visible area and its clinical symptoms are nonspecific. Prognosis of advanced nasopharyngeal carcinoma cases remains disappointing. SEPT9 is a methylation-based biomarker approved by the US Food and Drug Administration for colorectal cancer screening and diagnosis. Interestingly, downregulation of SEPT9, especially SEPT9_v2, mediated by promoter hypermethylation has been also detected in head and neck squamous cell carcinoma than in head and neck squamous epithelium, while other SEPT9 variants did not. These reasons above indicate a crucial role of SEPT9_v2 in cancer progression. Therefore, we address the methylation status of SEPT9_v2 in nasopharyngeal carcinoma and explore the role of SEPT9_v2 in nasopharyngeal carcinoma proliferation and cancer progression. RESULTS: SEPT9_v2 expression was found to be downregulated via promoter methylation in nasopharyngeal carcinoma cell lines and tissues. Ectopic expression of SEPT9_v2 induced G0/G1 cell cycle arrest and apoptosis, which exerted an inhibitory effect in cell proliferation and colony formation. Additionally, nasopharyngeal carcinoma cell migration and invasion were shown to be inhibited by SEPT9_v2. Furthermore, our data suggested that SEPT9_v2 inhibits proliferation and migration of nasopharyngeal carcinoma cells through inactivation of the Wnt/ß-catenin signaling pathway via miR92b-3p/FZD10. CONCLUSIONS: This study delineates SEPT9_v2, frequently silenced by promoter hypermethylation, exerts anti-tumor functions through inactivation of the Wnt/ß-catenin signaling pathway via miR92b-3p/FZD10 in nasopharyngeal carcinoma cells and, hence, SEPT9_v2 may be a promising therapeutic target and biomarker for nasopharyngeal carcinoma.


Subject(s)
DNA Methylation , Frizzled Receptors/genetics , MicroRNAs/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Septins/genetics , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , Genetic Variation , Humans , Promoter Regions, Genetic , Sequence Analysis, RNA , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL