Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Dtsch Tierarztl Wochenschr ; 97(2): 68-72, 1990 Feb.
Article in English | MEDLINE | ID: mdl-2155769

ABSTRACT

Three experimental approaches were used to study transmission of blue tongue (BT), infectious bovine rhinotracheitis (IBR) and bovine virus diarrhoea (BVD) viruses. These were insemination with contaminated semen, experimental infection of embryo donor cows, or transfer of embryos experimentally exposed to virus in vitro to normal recipients. Parameters assessed included number and quality of embryos produced, virus detection (isolation and electron microscopy), serology and histopathology. All superovulated sesceptible cows inseminated with semen containing blue tongue virus (BTV) (n = 2) or infectious bovine rhinotracheitis virus (IBRV) (n = 2) became infected. One cow inseminated with semen containing BTV produced seven virus-free seven-day-old embryos; the second cow failed to produce any embryos. One of two cows inseminated with semen containing IBRV produced two underdeveloped, virus-free embryos while no embryos were produced by the second cow. One of two cows inseminated with semen containing bovine viral diarrhoea virus (BVDV) became infected. Two poorly developed, virus-free seven-day-old embryos were recovered from one of these cows. Superovulated susceptible cows inoculated either intramuscularly with BTV (n = 3) or intranasally with IBR virus (n = 2) became infected. Virus was isolated from some tissues of two BTV-infected cows, neither of which produced embryos. A third BTV-infected cow produced two virus-free embryos collected at necropsy five days after inoculation. One of two cows experimentally infected with IBR virus, produced three embryos but virus was not detected either by electron microscopy (1 embryo) or in cell culture by cytopathic alterations (1 embryo).(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Bluetongue/transmission , Bovine Virus Diarrhea-Mucosal Disease/transmission , Cattle Diseases/transmission , Embryo Transfer/veterinary , Infectious Bovine Rhinotracheitis/transmission , Semen/microbiology , Animals , Cattle , Female , Insemination, Artificial/veterinary
2.
Proc Natl Acad Sci U S A ; 82(3): 940-4, 1985 Feb.
Article in English | MEDLINE | ID: mdl-3856242

ABSTRACT

The interaction of an optically pure benzomorphan opiate, (-)-N-allyl-N-normetazocine [(-)-ANMC], with the nicotinic acetylcholine receptor from Torpedo electroplaque was studied by using radioligand binding and affinity labeling. The binding was complex with at least two specific components having equilibrium dissociation constants of 0.3 microM and 2 microM. The affinity of the higher affinity component was decreased by carbamoylcholine but not by alpha-bungarotoxin. The effect of carbamoylcholine was not blocked by alpha-bungarotoxin. In comparison, the affinity of [3H]phencyclidine, a well-characterized ligand for a high-affinity site for noncompetitive blockers on the acetylcholine receptor, is increased by carbamoylcholine and the increase is blocked by alpha-bungarotoxin. The binding of (-)-[3H]ANMC was inhibited by a number of other benzomorphans, with (-) isomers being 4- to 5-fold more potent than (+) isomers. Phencyclidine inhibits the binding of (-)-[3H]ANMC to its high-affinity site by a mechanism that is not competitive. UV-catalyzed affinity labeling indicated that the high-affinity-binding site for (-)-[3H]ANMC is at least partially associated with the delta subunit. Tryptic degradation of the Torpedo marmorata delta chain suggested that (-)-ANMC labeled a 16,000-dalton COOH-terminal portion of the subunit. In contrast, 5-azido-[3H]trimethisoquin, a photoaffinity label of the high-affinity site for noncompetitive blockers, labels a 47,000-dalton NH2-terminal fragment of the delta subunit. These results suggest that (-)-[3H]ANMC binds to sites completely distinct from the binding sites for acetylcholine. The high-affinity-binding site for (-)-ANMC and that for phencyclidine and 5-azidotrimethisoquin are allosterically coupled but are regulated differently and are probably physically distinct.


Subject(s)
Electric Organ/metabolism , Phenazocine/analogs & derivatives , Receptors, Cholinergic/metabolism , Affinity Labels/metabolism , Animals , Binding Sites , Bungarotoxins/metabolism , Electrophoresis, Polyacrylamide Gel , Kinetics , Phenazocine/metabolism , Phencyclidine/metabolism , Photochemistry , Torpedo
SELECTION OF CITATIONS
SEARCH DETAIL