Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38888319

ABSTRACT

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Subject(s)
Aminoglycosides , Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Lipoglycopeptides , Microbial Sensitivity Tests , Respiratory Tract Infections , Animals , Lipoglycopeptides/pharmacology , Rabbits , Anthrax/drug therapy , Anthrax/microbiology , Anthrax/mortality , Bacillus anthracis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aminoglycosides/pharmacology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Disease Models, Animal , Levofloxacin/pharmacology , Female
2.
J Infect Dis ; 218(10): 1602-1610, 2018 10 05.
Article in English | MEDLINE | ID: mdl-29912426

ABSTRACT

Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited. Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP). Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection. Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.


Subject(s)
Aerosols/administration & dosage , Henipavirus Infections , Nipah Virus/pathogenicity , Administration, Inhalation , Animals , Cricetinae , Disease Models, Animal , Henipavirus Infections/diagnostic imaging , Henipavirus Infections/pathology , Henipavirus Infections/transmission , Henipavirus Infections/virology , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Lung/diagnostic imaging , Lung/pathology , Lung/virology , Mesocricetus , Optical Imaging , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Brain ; 140(2): 370-386, 2017 02.
Article in English | MEDLINE | ID: mdl-28007986

ABSTRACT

Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance.


Subject(s)
Leukoencephalopathies/genetics , Leukoencephalopathies/metabolism , Leukoencephalopathies/physiopathology , Proteins/genetics , Proteins/metabolism , Adolescent , Animals , Brain/embryology , Brain/growth & development , Brain/metabolism , Brain/pathology , Child , Consanguinity , Dinoprostone/metabolism , Embryo, Mammalian , Family Health , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Gene Expression Regulation/genetics , Humans , Leukoencephalopathies/diagnostic imaging , Lung/pathology , Male , Mice , Mice, Transgenic , Models, Molecular , NF-kappa B/metabolism , Phospholipases A2/metabolism , Skin/pathology
4.
Infect Immun ; 80(1): 234-42, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22006566

ABSTRACT

Natural killer (NK) cells have innate antibacterial activity that could be targeted for clinical interventions for infectious disease caused by naturally occurring or weaponized bacterial pathogens. To determine a potential role for NK cells in immunity to Bacillus anthracis, we utilized primary human and murine NK cells, in vitro assays, and in vivo NK cell depletion in a murine model of inhalational anthrax. Our results demonstrate potent antibacterial activity by human NK cells against B. anthracis bacilli within infected autologous monocytes. Surprisingly, NK cells also mediate moderate antibacterial effects on extracellular vegetative bacilli but do not have activity against extracellular or intracellular spores. The immunosuppressive anthrax lethal toxin impairs NK gamma interferon (IFN-γ) expression, but neither lethal nor edema toxin significantly alters the viability or cytotoxic effector function of NK cells. Compared to human NK cells, murine NK cells have a similar, though less potent, activity against intracellular and extracellular B. anthracis. The in vivo depletion of murine NK cells does not alter animal survival following intranasal infection with B. anthracis spores in our studies but significantly increases the bacterial load in the blood of infected animals. Our studies demonstrate that NK cells participate in the innate immune response against B. anthracis and suggest that immune modulation to augment NK cell function in early stages of anthrax should be further explored in animal models as a clinical intervention strategy.


Subject(s)
Anthrax/immunology , Bacillus anthracis/immunology , Killer Cells, Natural/immunology , Adult , Animals , Antigens, Bacterial/toxicity , Bacterial Toxins/toxicity , Cells, Cultured , Disease Models, Animal , Female , Humans , Interferon-gamma/antagonists & inhibitors , Killer Cells, Natural/microbiology , Leukocyte Reduction Procedures , Mice , Middle Aged , Spores, Bacterial/immunology , Survival Analysis
5.
Bioorg Med Chem ; 20(1): 368-76, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22154558

ABSTRACT

Edema factor (EF) toxin of Bacillus anthracis (NIAID category A), and several other toxins from NIAID category B Biodefense target bacteria are adenylyl cyclases or adenylyl cyclase agonists that catalyze the conversion of ATP to 3',5'-cyclic adenosine monophosphate (cAMP). We previously identified compound 1 (3-[(9-oxo-9H-fluorene-1-carbonyl)-amino]-benzoic acid), that inhibits EF activity in cultured mammalian cells, and reduces diarrhea caused by enterotoxigenic Escherichia coli (ETEC) at an oral dosage of 15µg/mouse. Here, molecular docking was used to predict improvements in potency and solubility of new derivatives of compound 1 in inhibiting edema toxin (ET)-catalyzed stimulation of cyclic AMP production in murine monocyte-macrophage cells (RAW 264.7). Structure-activity relationship (SAR) analysis of the bioassay results for 22 compounds indicated positions important for activity. Several derivatives demonstrated superior pharmacological properties compared to our initial lead compound, and are promising candidates to treat anthrax infections and diarrheal diseases induced by toxin-producing bacteria.


Subject(s)
Bacillus anthracis/metabolism , Bacterial Toxins/antagonists & inhibitors , Drug Design , Adenylyl Cyclase Inhibitors , Adenylyl Cyclases/metabolism , Administration, Oral , Animals , Antigens, Bacterial/metabolism , Bacterial Toxins/metabolism , Benzoates/chemical synthesis , Benzoates/chemistry , Binding Sites , Cell Line , Computer Simulation , Cyclic AMP/metabolism , Fluorenes/chemistry , Mice , Protein Structure, Tertiary , Structure-Activity Relationship
6.
Antimicrob Agents Chemother ; 55(1): 132-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20956592

ABSTRACT

Inhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2). Certain antibodies against PA have been shown to protect against anthrax in vivo. As an alternative to anti-PA antibodies, we produced a fusion of the extracellular domain of human CMG2 and human IgG Fc, using both transient and stable tobacco plant expression systems. Optimized expression led to the CMG2-Fc fusion protein being produced at high levels: 730 mg/kg fresh leaf weight in Nicotiana benthamiana and 65 mg/kg in N. tabacum. CMG2-Fc, purified from tobacco plants, fully protected rabbits against a lethal challenge with B. anthracis spores at a dose of 2 mg/kg body weight administered at the time of challenge. Treatment with CMG2-Fc did not interfere with the development of the animals' own immunity to anthrax, as treated animals that survived an initial challenge also survived a rechallenge 30 days later. The glycosylation of the Fc (or lack thereof) had no significant effect on the protective potency of CMG2-Fc in rabbits or on its serum half-life, which was about 5 days. Significantly, CMG2-Fc effectively neutralized, in vitro, LeTx-containing mutant forms of PA that were not neutralized by anti-PA monoclonal antibodies.


Subject(s)
Anthrax/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Nicotiana/metabolism , Receptors, Peptide/immunology , Receptors, Peptide/metabolism , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Animals , Humans , Immunoglobulin Fc Fragments/genetics , Rabbits , Receptors, Peptide/genetics , Recombinant Fusion Proteins/genetics , Nicotiana/genetics
7.
Antimicrob Agents Chemother ; 55(11): 5034-42, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21859946

ABSTRACT

The Gram-negative plague bacterium, Yersinia pestis, has historically been regarded as one of the deadliest pathogens known to mankind, having caused three major pandemics. After being transmitted by the bite of an infected flea arthropod vector, Y. pestis can cause three forms of human plague: bubonic, septicemic, and pneumonic, with the latter two having very high mortality rates. With increased threats of bioterrorism, it is likely that a multidrug-resistant Y. pestis strain would be employed, and, as such, conventional antibiotics typically used to treat Y. pestis (e.g., streptomycin, tetracycline, and gentamicin) would be ineffective. In this study, cethromycin (a ketolide antibiotic which inhibits bacterial protein synthesis and is currently in clinical trials for respiratory tract infections) was evaluated for antiplague activity in a rat model of pneumonic infection and compared with levofloxacin, which operates via inhibition of bacterial topoisomerase and DNA gyrase. Following a respiratory challenge of 24 to 30 times the 50% lethal dose of the highly virulent Y. pestis CO92 strain, 70 mg of cethromycin per kg of body weight (orally administered twice daily 24 h postinfection for a period of 7 days) provided complete protection to animals against mortality without any toxic effects. Further, no detectable plague bacilli were cultured from infected animals' blood and spleens following cethromycin treatment. The antibiotic was most effective when administered to rats 24 h postinfection, as the animals succumbed to infection if treatment was further delayed. All cethromycin-treated survivors tolerated 2 subsequent exposures to even higher lethal Y. pestis doses without further antibiotic treatment, which was related, in part, to the development of specific antibodies to the capsular and low-calcium-response V antigens of Y. pestis. These data demonstrate that cethromycin is a potent antiplague drug that can be used to treat pneumonic plague.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Ketolides/therapeutic use , Levofloxacin , Ofloxacin/therapeutic use , Plague/drug therapy , Yersinia pestis/drug effects , Yersinia pestis/pathogenicity , Animals , Female , Plague/prevention & control , Rats
8.
J Clin Microbiol ; 49(5): 1708-15, 2011 May.
Article in English | MEDLINE | ID: mdl-21367990

ABSTRACT

We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule. The growth rate of the Δcaf mutant generally was similar to that of the wild-type (WT) bacterium at both 26 and 37 °C, although the mutant's growth dropped slightly during the late phase at 37 °C. The Δcaf mutant was as virulent as WT CO92 in the pneumonic plague mouse model; however, it was attenuated in developing bubonic plague. Both dipsticks had similar sensitivities, requiring a minimum of 0.5 µg/ml of purified F1 antigen or 1 × 10(5) to 5 × 10(5) CFU/ml of WT CO92 for positive results, while the blood samples were negative for up to 1 × 10(8) CFU/ml of the Δcaf mutant. Our studies demonstrated the diagnostic potential of two plague dipsticks in detecting capsular-positive strains of Y. pestis in bubonic and pneumonic plague.


Subject(s)
Bacterial Proteins/analysis , Clinical Laboratory Techniques/methods , Gene Deletion , Plague/diagnosis , Plague/pathology , Virulence Factors/genetics , Yersinia pestis/pathogenicity , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disease Models, Animal , Female , Immunoassay , Mice , Mice, Inbred BALB C , Plague/microbiology , Plague/mortality , Reagent Kits, Diagnostic , Sensitivity and Specificity , Survival Analysis , Virulence , Virulence Factors/metabolism , Yersinia pestis/genetics , Yersinia pestis/growth & development
9.
ACS Infect Dis ; 7(8): 2176-2191, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34218660

ABSTRACT

Anthrax is caused by Bacillus anthracis and can result in nearly 100% mortality due in part to anthrax toxin. Antimalarial amodiaquine (AQ) acts as a host-oriented inhibitor of anthrax toxin endocytosis. Here, we determined the pharmacokinetics and safety of AQ in mice, rabbits, and humans as well as the efficacy in the fly, mouse, and rabbit models of anthrax infection. In the therapeutic-intervention studies, AQ nearly doubled the survival of mice infected subcutaneously with a B. anthracis dose lethal to 60% of the animals (LD60). In rabbits challenged with 200 LD50 of aerosolized B. anthracis, AQ as a monotherapy delayed death, doubled the survival rate of infected animals that received a suboptimal amount of antibacterial levofloxacin, and reduced bacteremia and toxemia in tissues. Surprisingly, the anthrax efficacy of AQ relies on an additional host macrophage-directed antibacterial mechanism, which was validated in the toxin-independent Drosophila model of Bacillus infection. Lastly, a systematic literature review of the safety and pharmacokinetics of AQ in humans from over 2 000 published articles revealed that AQ is likely safe when taken as prescribed, and its pharmacokinetics predicts anthrax efficacy in humans. Our results support the future examination of AQ as adjunctive therapy for the prophylactic anthrax treatment.


Subject(s)
Anthrax , Bacillus anthracis , Amodiaquine , Animals , Anthrax/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Levofloxacin , Mice , Rabbits , Systematic Reviews as Topic
10.
Am J Respir Cell Mol Biol ; 42(1): 40-50, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19329554

ABSTRACT

Pneumonia is a serious problem worldwide. We recently demonstrated that innate defense mechanisms of the lung are highly inducible against pneumococcal pneumonia. To determine the breadth of protection conferred by stimulation of lung mucosal innate immunity, and to identify cells and signaling pathways activated by this treatment, mice were treated with an aerosolized bacterial lysate, then challenged with lethal doses of bacterial and fungal pathogens. Mice were highly protected against a broad array of Gram-positive, Gram-negative, and class A bioterror bacterial pathogens, and the fungal pathogen, Aspergillus fumigatus. Protection was associated with rapid pathogen killing within the lungs, and this effect was recapitulated in vitro using a respiratory epithelial cell line. Gene expression analysis of lung tissue showed marked activation of NF-kappaB, type I and II IFN, and antifungal Card9-Bcl10-Malt1 pathways. Cytokines were the most strongly induced genes, but the inflammatory cytokines TNF and IL-6 were not required for protection. Lung-expressed antimicrobial peptides were also highly up-regulated. Taken together, stimulated innate resistance appears to occur through the activation of multiple host defense signaling pathways in lung epithelial cells, inducing rapid pathogen killing, and conferring broad protection against virulent bacterial and fungal pathogens. Augmentation of innate antimicrobial defenses of the lungs might have therapeutic value for protection of patients with neutropenia or impaired adaptive immunity against opportunistic pneumonia, and for defense of immunocompetent subjects against a bioterror threat or epidemic respiratory infection.


Subject(s)
Bacterial Infections/immunology , Epithelial Cells/cytology , Immunity, Innate , Lung/pathology , Mycoses/immunology , Pneumonia/immunology , Aerosols , Animals , Bacterial Infections/microbiology , Epithelial Cells/microbiology , Female , Gene Expression Regulation , Inflammation , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Mycoses/microbiology , Pneumonia/microbiology , Time Factors
11.
Infect Immun ; 78(4): 1740-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20123712

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) produces the ADP-ribosyltransferase toxin known as heat-labile enterotoxin (LT). In addition to the toxic effect of LT resulting in increases of cyclic AMP (cAMP) and disturbance of cellular metabolic processes, this toxin promotes bacterial adherence to intestinal epithelial cells (A. M. Johnson, R. S. Kaushik, D. H. Francis, J. M. Fleckenstein, and P. R. Hardwidge, J. Bacteriol. 191:178-186, 2009). Therefore, we hypothesized that the identification of a compound that inhibits the activity of the toxin would have a suppressive effect on the ETEC colonization capabilities. Using in vivo and in vitro approaches, we present evidence demonstrating that a fluorenone-based compound, DC5, which inhibits the accumulation of cAMP in intoxicated cultured cells, significantly decreases the colonization abilities of adenylyl cyclase toxin-producing bacteria, such as ETEC. These findings established that DC5 is a potent inhibitor both of toxin-induced cAMP accumulation and of ETEC adherence to epithelial cells. Thus, DC5 may be a promising compound for treatment of diarrhea caused by ETEC and other adenylyl cyclase toxin-producing bacteria.


Subject(s)
Adenylyl Cyclase Inhibitors , Adhesins, Bacterial/metabolism , Bacterial Toxins/antagonists & inhibitors , Enterotoxigenic Escherichia coli/pathogenicity , Enterotoxins/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Escherichia coli Infections/prevention & control , Escherichia coli Proteins/antagonists & inhibitors , Animals , Bacterial Adhesion/drug effects , Cell Line , Colony Count, Microbial , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/toxicity , Epithelial Cells/microbiology , Female , Fluorenes/administration & dosage , Fluorenes/pharmacology , Fluorenes/toxicity , Humans , Inhibitory Concentration 50 , Intestine, Small/microbiology , Intestine, Small/pathology , Macrophages/microbiology , Mice
12.
Pathogens ; 9(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971758

ABSTRACT

The use of antibiotics is a vital means of treating infections caused by the bacteria Bacillus (B.) anthracis. Importantly, with the potential future use of multidrug-resistant strains of B. anthracis as bioweapons, new antibiotics are needed as alternative therapeutics. In this blinded study, we assessed the protective efficacy of teixobactin, a recently discovered antibiotic, against inhalation anthrax infection in the adult rabbit model. New Zealand White rabbits were infected with a lethal dose of B. anthracis Ames spores via the inhalation route, and blood samples were collected at various times to assess antigenemia, bacteremia, tissue bacterial load, and antibody production. Treatments were administered upon detection of B. anthracis protective antigen in the animals' sera. For comparison, a fully protective dose of levofloxacin was used as a positive control. Rabbits treated with teixobactin showed 100% survival following infection, and the bacteremia was completely resolved by 24-48 h post-treatment. In addition, the bacterial/spore loads in tissues of the animals treated with teixobactin were either zero or dramatically less relative to that of the negative control animals. Moreover, microscopic evaluation of the tissues revealed decreased pathology following treatment with teixobactin. Overall, these results show that teixobactin was protective against inhalation anthrax infection in the rabbit model, and they indicate the potential of teixobactin as a therapeutic for the disease.

13.
Infect Immun ; 77(6): 2530-43, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19307216

ABSTRACT

Bacillus anthracis, the etiological agent of anthrax, is a gram-positive spore-forming bacterium. It produces edema toxin (EdTx), a powerful adenylate cyclase that increases cyclic AMP (cAMP) levels in host cells. Because other cAMP-increasing agents inhibit key macrophage (MPhi) functions, such as phagocytosis, it was hypothesized that EdTx would exhibit similar suppressive activities. Our previous GeneChip data showed that EdTx downregulated MPhi genes involved in actin cytoskeleton remodeling, including protein kinase A (PKA). To further examine the role of EdTx during anthrax pathogenesis, we explored the hypothesis that EdTx treatment leads to deregulation of the cAMP-dependent PKA system, resulting in impaired cytoskeletal functions essential for MPhi activity. Our data revealed that EdTx significantly suppressed human MPhi phagocytosis of Ames spores. Cytoskeletal changes, such as decreased cell spreading and lowered F-actin content, were also observed for toxin-treated MPhis. Further, EdTx altered the protein levels and activity of PKA and exchange protein activated by cAMP (Epac), a recently identified cAMP-binding molecule. By using PKA- and Epac-selective cAMP analogs, we confirmed the involvement of both pathways in the inhibition of MPhi functions elicited by EdTx-generated cAMP. These results suggested that EdTx weakened the host immune response by increasing cAMP levels, which then signaled via PKA and Epac to cripple MPhi phagocytosis and interfered with cytoskeletal remodeling.


Subject(s)
Antigens, Bacterial/toxicity , Bacterial Toxins/toxicity , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP/metabolism , Cytoskeleton/metabolism , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Macrophages/drug effects , Phagocytosis/drug effects , Bacillus anthracis/immunology , Bacillus anthracis/pathogenicity , Cells, Cultured , Humans , Macrophages/immunology , Spores, Bacterial/immunology
14.
Infect Immun ; 77(4): 1649-63, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19168734

ABSTRACT

Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.


Subject(s)
Anthrax Vaccines/immunology , Anthrax/immunology , Antibodies, Bacterial/blood , Bacillus anthracis , Vaccines, Inactivated/immunology , Animals , Anthrax/microbiology , Anthrax/prevention & control , Anthrax Vaccines/administration & dosage , Anthrax Vaccines/genetics , Antigens, Bacterial/immunology , Bacillus anthracis/genetics , Bacillus anthracis/immunology , Bacillus anthracis/pathogenicity , Bacillus anthracis/radiation effects , Female , Furocoumarins , Guinea Pigs , Immunity , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mutation , Rabbits , Spores, Bacterial/genetics , Ultraviolet Rays , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/genetics , Virulence
15.
Cell Signal ; 20(5): 844-61, 2008 May.
Article in English | MEDLINE | ID: mdl-18291623

ABSTRACT

Phospholipase A(2) (PLA(2))-activating protein (PLAA) is a novel signaling molecule that regulates the production of prostaglandins (PGE(2)) and tumor necrosis factor (TNF)-alpha. To characterize the function of native PLAA in situ, we generated HeLa (Tet-off) cells overexpressing plaa (plaa(high)) and control (plaa(low)) cells, with the plaa gene in opposite orientation in the latter construct. The plaa(high) cells produced significantly more PGE(2) and interleukin (IL)-6 compared to plaa(low) cells in response to TNF-alpha. There was an increased activation and/or expression of cytosolic PLA(2), cyclooxgenase-2, and NF-kappaB after induction of plaa(high) cells with TNF-alpha compared to the respective plaa(low) cells. Microarray analysis of plaa(high) cells followed by functional assays revealed increased production of proinflammatory cytokine IL-32 and a decrease in the production of annexin A4 and clusterin compared to plaa(low) cells. We demonstrated the role of annexin A4 as an inhibitor of PLA(2) and showed that addition of exogeneous clusterin limited the production of PGE(2) from plaa(high) cells. To understand regulation of plaa gene expression, we used a luciferase reporter system in HeLa cells and identified one stimulatory element, with Sp1 binding sites, and one inhibitory element, in exon 1 of the plaa gene. By using decoy DNA oligonucleotides to Sp1 and competitive binding assays, we showed that Sp1 maintains basal expression of the plaa gene and binds to the above-mentioned stimulatory element. We demonstrated for the first time that the induction of native PLAA by TNF-alpha can perpetuate inflammation by enhancing activation of PLA(2) and NF-kappaB.


Subject(s)
Inflammation/metabolism , Phospholipases A2/metabolism , Proteins/metabolism , Annexin A4/genetics , Annexin A4/metabolism , Base Sequence , Binding Sites , Clusterin/genetics , Clusterin/metabolism , DNA Primers/genetics , Enzyme Activation , Gene Expression , Gene Expression Profiling , HeLa Cells , Humans , Inflammation/etiology , Inflammation/genetics , Interleukin-6/biosynthesis , Interleukins/genetics , Interleukins/metabolism , NF-kappa B/metabolism , Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Sp1 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/pharmacology
16.
Comp Med ; 59(3): 257-65, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19619416

ABSTRACT

Bacillus anthracis, the causative agent of anthrax, is a category A priority pathogen that causes extensive damage in humans. For this reason, B. anthracis has been the focus of numerous studies using various animal models. In this study, we explored physiologic parameters in Dutch belted rabbits with inhalation anthrax to characterize the disease progression in this model. To this end, we infected Dutch belted rabbits with 100 LD(50) B. anthracis Ames spores by nasal instillation and continuously recorded various physiologic parameters by using telemetry. In addition, samples were collected at selected times for serum chemistry, hematology, and blood gas analysis. The animals exhibited hemodynamic and respiratory changes that coincided with those reported in human cases of inhalational anthrax infection, including hypotension, altered heart rate, and respiratory distress. Likewise, hematology, serum chemistry, and blood gas analysis revealed trends comparable to human anthrax-related pathophysiology. The Dutch belted rabbit model of inhalational anthrax exhibited most of the physiologic, hematologic, and biochemical sequelae noted in human cases. Therefore, this rabbit model fulfills several of the criteria of a useful animal model for studying disease pathogenesis and evaluating therapeutics during inhalational anthrax.


Subject(s)
Anthrax/physiopathology , Bacillus anthracis/physiology , Respiratory Distress Syndrome/physiopathology , Respiratory Insufficiency/physiopathology , Animals , Anthrax/microbiology , Anthrax/transmission , Bacillus anthracis/pathogenicity , Blood Gas Analysis , Disease Models, Animal , Female , Hematologic Tests , Hemodynamics , Inhalation Exposure , Rabbits , Respiratory Distress Syndrome/microbiology , Respiratory Insufficiency/microbiology
17.
Infect Immun ; 76(4): 1390-409, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18227160

ABSTRACT

Yersinia pestis evolved from Y. pseudotuberculosis to become the causative agent of bubonic and pneumonic plague. We identified a homolog of the Salmonella enterica serovar Typhimurium lipoprotein (lpp) gene in Yersinia species and prepared lpp gene deletion mutants of Y. pseudotuberculosis YPIII, Y. pestis KIM/D27 (pigmentation locus minus), and Y. pestis CO92 with reduced virulence. Mice injected via the intraperitoneal route with 5 x 10(7) CFU of the Deltalpp KIM/D27 mutant survived a month, even though this would have constituted a lethal dose for the parental KIM/D27 strain. Subsequently, these Deltalpp KIM/D27-injected mice were solidly protected against an intranasally administered, highly virulent Y. pestis CO92 strain when it was given as five 50% lethal doses (LD(50)). In a parallel study with the pneumonic plague mouse model, after 72 h postinfection, the lungs of animals infected with wild-type (WT) Y. pestis CO92 and given a subinhibitory dose of levofloxacin had acute inflammation, edema, and masses of bacteria, while the lung tissue appeared essentially normal in mice inoculated with the Deltalpp mutant of CO92 and given the same dose of levofloxacin. Importantly, while WT Y. pestis CO92 could be detected in the bloodstreams and spleens of infected mice at 72 h postinfection, the Deltalpp mutant of CO92 could not be detected in those organs. Furthermore, the levels of cytokines/chemokines detected in the sera were significantly lower in animals infected with the Deltalpp mutant than in those infected with WT CO92. Additionally, the Deltalpp mutant was more rapidly killed by macrophages than was the WT CO92 strain. These data provided evidence that the Deltalpp mutants of yersiniae were significantly attenuated and could be useful tools in the development of new vaccines.


Subject(s)
Lipoproteins/metabolism , Plague/microbiology , Virulence Factors/metabolism , Yersinia pestis/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cytokines/blood , Disease Models, Animal , Female , Levofloxacin , Lipoproteins/deficiency , Lipoproteins/genetics , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mutation/genetics , Ofloxacin/pharmacology , Ofloxacin/therapeutic use , Plague/blood , Plague/drug therapy , Plague/pathology , Virulence , Virulence Factors/deficiency , Virulence Factors/genetics , Yersinia pestis/drug effects , Yersinia pestis/genetics , Yersinia pestis/metabolism , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/pathogenicity
18.
Bioorg Med Chem Lett ; 18(14): 4215-8, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18539457

ABSTRACT

The synthesis and development of a novel class of molecules that inhibit anthrax edema factor, an adenylyl cyclase, is reported. These molecules are derived from the initial discovery that histidine and imidazole adducts of the prostaglandin PGE(2) reduce the net secretory response of cholera toxin-challenged mice and act directly on the action of anthrax edema factor, a calmodulin-dependent adenylyl cyclase. The simple enones examined in this letter were prepared by palladium-catalyzed Suzuki reaction.


Subject(s)
Adenylyl Cyclases/chemistry , Anthrax/metabolism , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Adenylyl Cyclases/metabolism , Animals , Antigens, Bacterial , Bacillus anthracis/enzymology , Bacterial Toxins , Binding Sites , Calmodulin/metabolism , Catalysis , Dinoprostone/metabolism , Drug Design , Ketones , Mice , Models, Chemical , Palladium/chemistry
19.
Bioorg Med Chem ; 16(15): 7225-33, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18620864

ABSTRACT

Several pathogenic bacteria produce adenylyl cyclase toxins, such as the edema factor (EF) of Bacillus anthracis. These disturb cellular metabolism by catalyzing production of excessive amounts of the regulatory molecule cAMP. Here, a structure-based method, where a 3D-pharmacophore that fit the active site of EF was constructed from fragments, was used to identify non-nucleotide inhibitors of EF. A library of small molecule fragments was docked to the EF-active site in existing crystal structures, and those with the highest HINT scores were assembled into a 3D-pharmacophore. About 10,000 compounds, from over 2.7 million compounds in the ZINC database, had a similar molecular framework. These were ranked according to their docking scores, using methodology that was shown to achieve maximum accuracy (i.e., how well the docked position matched the experimentally determined site for ATP analogues in crystal structures of the complex). Finally, 19 diverse compounds with the best AutoDock binding/docking scores were assayed in a cell-based assay for their ability to reduce cAMP secretion induced by EF. Four of the test compounds, from different structural groups, inhibited in the low micromolar range. One of these has a core structure common to phosphatase inhibitors previously identified by high-throughput assays of a diversity library. Thus, the fragment-based pharmacophore identified a small number of diverse compounds for assay, and greatly enhanced the selection process of advanced lead compounds for combinatorial design.


Subject(s)
Adenylyl Cyclase Inhibitors , Animals , Antigens, Bacterial , Bacterial Toxins , Biological Assay , Cell Line , Combinatorial Chemistry Techniques , Drug Design , Macrophages/drug effects , Models, Molecular , Molecular Structure , Protein Binding , Structure-Activity Relationship
20.
Proteins ; 67(3): 593-605, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17311351

ABSTRACT

The adenylyl cyclase toxins produced by bacteria (such as the edema factor (EF) of Bacillus anthracis and CyaA of Bordetella pertussis) are important virulence factors in anthrax and whooping cough. Co-crystal structures of these proteins differ in the number and positioning of metal ions in the active site. Metal ions bound only to the ligands in the crystal structures are not included during the docking. To determine what effect these "missing" metals have on docking results, the AutoDock, LigandFit/Cerius2, and FlexX programs were compared for their ability to correctly place substrate analogues and inhibitors into the active sites of the crystal structures of EF, CyaA, and mammalian adenylate cyclase. Protonating the phosphates of substrate analogues improved the accuracy of docking into the active site of CyaA, where the grid did not account for one of the three Mg2+ ions in the crystal structure. The AutoDock ranking (based on docking energies) of a test group of compounds was relatively unaffected by protonation of carboxyl groups. However, the ranking by FlexX-ChemScore varied significantly, especially for docking to CyaA, suggesting that alternate protonation states should be tested when screening compound libraries with this program. When the charges on the bound metal were set correctly, AutoDock was the most reliable program of the three tested with respect to positioning substrate analogues and ranking compounds according to their experimentally determined ability to inhibit EF.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Metals/chemistry , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Adenylate Cyclase Toxin/metabolism , Adenylate Cyclase Toxin/toxicity , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/metabolism , Antigens, Bacterial/toxicity , Bacillus anthracis/chemistry , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Binding Sites , Bordetella pertussis/chemistry , Cell Line , Computer Simulation , Crystallography, X-Ray , Ligands , Metals/metabolism , Models, Molecular , Protein Binding , Software , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL