Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eur J Clin Invest ; 29(8): 679-86, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10457151

ABSTRACT

BACKGROUND: Acylation stimulating protein (ASP) is a potent stimulator of TG synthesis in human adipocytes. DESIGN: In the present study, we have analysed plasma ASP and adipsin levels and their relationships to plasma lipids in non-obese and obese groups. RESULTS: The results show that the frequency distribution of ASP is skewed but that of adipsin is normal in both groups. In the non-obese population, the mean levels of plasma ASP and adipsin were 20.2 nmol L-1 (median) and 66.6 +/- 19 nmol L-1 (mean) respectively. No difference was observed between men and women for each of the parameters. In the obese population, the median plasma ASP was increased by 246% (69.9 nmol L-1) and adipsin by 31% (87.0 +/- 22.7 nmol L-1) above that of the control group. Although the levels for men and women were not statistically different for adipsin, the median ASP plasma concentration was 1.9-fold higher in obese women than in obese men (71.8 nmol L-1 vs. 37.6 nmol L-1, P < 0.05). Best subset regression analysis provided a model with variables that best predict plasma ASP [r2 = 0.160, P < 0.008 for body mass index (BMI), P < 0.05 for triacylglycerol (TG), P < 0.03 for free fatty acid (FFA)] and plasma adipsin (r2 = 0.057, P < 0.017 for BMI) in a non-obese population. In obese subjects, the model was different for plasma ASP (P = NS for any of the variables) and plasma adipsin (r2 = 0.356, P < 0.008 for FFA, P < 0.0002 for BMI, P < 0.02 for age). There was no correlation between ASP and adipsin in either the non-obese or the obese group. CONCLUSION: The present data suggest involvement of the ASP/adipsin pathway in the pathogenesis of obesity.


Subject(s)
Blood Proteins/metabolism , Complement C3a/analogs & derivatives , Lipids/blood , Obesity, Morbid/blood , Serine Endopeptidases/blood , Adult , Aged , Case-Control Studies , Complement Factor D , Female , Humans , Male , Middle Aged , Reference Values
2.
J Lipid Res ; 41(12): 1963-8, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11108729

ABSTRACT

The objective of this study was to test the hypothesis that increased fatty acid trapping by subcutaneous adipose tissue might contribute to the development and/or maintenance of obesity. To do so, venoarterial (V-A) gradients across subcutaneous adipose tissue for triglycerides, glycerol, nonesterified fatty acid (NEFA), and acylation-stimulating protein (ASP) were determined in eight lean females [body mass index (BMI), 22.2 +/- 0.6] and eight obese females (BMI, 34.4 +/- 3.4). Plasma insulin was also measured at intervals throughout this period. Fasting plasma triglyceride was significantly higher in the obese group and postprandial triglyceride was also significantly delayed. In contrast, both triglyceride clearance and fatty acid uptake by subcutaneous adipose tissue were significantly greater in the obese group compared with the lean group. Fasting insulin did not differ between the groups, but postprandial insulin values were significantly higher in the obese group. The pattern of ASP release from subcutaneous adipose tissue also appeared to differ in that it was significantly greater in the early postprandial period (0;-90 min) in the obese group versus the lean group and this correlated with greater triglyceride clearance during this period. Moreover, there were strong, positive correlations between BMI and the V-A gradient for fasting ASP, the 0- to 90-min area under the curve (AUC) for ASP V-A gradient fasting insulin, and the 0- to 90-min AUC for fatty acid incorporation into adipose tissue. Taken together, these data demonstrate that fatty acid trapping by adipose tissue can be increased even when overall plasma triglyceride clearance is delayed. The postprandial pattern of insulin, in particular, was altered in the obese, although it is certainly possible that differences in ASP release or response could also contribute to increased fatty acid trapping in the obese. The data, therefore, suggest that increased fatty acid trapping by adipose tissue may be a feature of some forms of obesity.


Subject(s)
Adipose Tissue/metabolism , Fatty Acids/metabolism , Obesity/metabolism , Postprandial Period , Adult , Apolipoproteins B/blood , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL