Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Nanotechnology ; 35(41)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38744268

ABSTRACT

The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over the years, the NanoMRI field has also expanded to include the goal of useful high-resolution nuclear magnetic resonance (NMR) spectroscopy of molecules under ambient conditions, including samples up to the micron-scale. The realization of these goals requires the development of spin detection techniques that are many orders of magnitude more sensitive than conventional NMR and MRI, capable of detecting and controlling nanoscale ensembles of spins. Over the years, a number of different technical approaches to NanoMRI have emerged, each possessing a distinct set of capabilities for basic and applied areas of science. The goal of this roadmap article is to report the current state of the art in NanoMRI technologies, outline the areas where they are poised to have impact, identify the challenges that lie ahead, and propose methods to meet these challenges. This roadmap also shows how developments in NanoMRI techniques can lead to breakthroughs in emerging quantum science and technology applications.

2.
Phys Rev Lett ; 131(1): 010802, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37478433

ABSTRACT

We report on experiments that quantify the role of a central electronic spin as a relaxation source for nuclear spins in its nanoscale environment. Our strategy exploits hyperpolarization injection from the electron as a means to controllably probe an increasing number of nuclear spins in the bath and subsequently interrogate them with high fidelity. Our experiments are focused on a model system of a nitrogen vacancy center electronic spin surrounded by several hundred ^{13}C nuclear spins. We observe that the ^{13}C transverse spin relaxation times vary significantly with the extent of hyperpolarization injection, allowing the ability to measure the influence of electron-mediated relaxation extending over several nanometers. These results suggest interesting new means to spatially discriminate nuclear spins in a nanoscale environment and have direct relevance to dynamic nuclear polarization and quantum sensors and memories constructed from hyperpolarized nuclei.

3.
J Chem Phys ; 159(15)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37843056

ABSTRACT

We report on a strategy to indirectly read out the spectrum of an electronic spin via polarization transfer to nuclear spins in its local environment. The nuclear spins are far more abundant and have longer lifetimes, allowing for repeated polarization accumulation in them. Subsequent nuclear interrogation can reveal information about the electronic spectral density of states. We experimentally demonstrate the method by reading out the ESR spectrum of nitrogen vacancy center electrons in diamond via readout of lattice 13C nuclei. Spin-lock control on the 13C nuclei yields a significantly enhanced signal-to-noise ratio for the nuclear readout. Spectrally mapped readout presents operational advantages in being background-free and immune to crystal orientation and optical scattering. We harness these advantages to demonstrate applications in underwater magnetometry. The physical basis for the "one-to-many" spectral map is itself intriguing. To uncover its origin, we develop a theoretical model that maps the system dynamics, involving traversal of a cascaded structure of Landau-Zener anti-crossings, to the operation of a tilted "Galton board." This work points to new opportunities for "ESR-via-NMR" in dilute electronic systems and in hybrid electron-nuclear quantum memories and sensors.

4.
Phys Rev Lett ; 127(17): 170603, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34739295

ABSTRACT

We report the observation of long-lived Floquet prethermal states in a bulk solid composed of dipolar-coupled ^{13}C nuclei in diamond at room temperature. For precessing nuclear spins prepared in an initial transverse state, we demonstrate pulsed spin-lock Floquet control that prevents their decay over multiple-minute-long periods. We observe Floquet prethermal lifetimes T_{2}^{'}≈90.9 s, extended >60 000-fold over the nuclear free induction decay times. The spins themselves are continuously interrogated for ∼10 min, corresponding to the application of ≈5.8×10^{6} control pulses. The ^{13}C nuclei are optically hyperpolarized by lattice nitrogen vacancy centers; the combination of hyperpolarization and continuous spin readout yields significant signal-to-noise ratio in the measurements. This allows probing the Floquet thermalization dynamics with unprecedented clarity. We identify four characteristic regimes of the thermalization process, discerning short-time transient processes leading to the prethermal plateau and long-time system heating toward infinite temperature. This Letter points to new opportunities possible via Floquet control in networks of dilute, randomly distributed, low-sensitivity nuclei. In particular, the combination of minutes-long prethermal lifetimes and continuous spin interrogation opens avenues for quantum sensors constructed from hyperpolarized Floquet prethermal nuclei.

SELECTION OF CITATIONS
SEARCH DETAIL