Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Nature ; 574(7780): 658-662, 2019 10.
Article in English | MEDLINE | ID: mdl-31666724

ABSTRACT

The engineering of biological molecules is a key concept in the design of highly functional, sophisticated soft materials. Biomolecules exhibit a wide range of functions and structures, including chemical recognition (of enzyme substrates or adhesive ligands1, for instance), exquisite nanostructures (composed of peptides2, proteins3 or nucleic acids4), and unusual mechanical properties (such as silk-like strength3, stiffness5, viscoelasticity6 and resiliency7). Here we combine the computational design of physical (noncovalent) interactions with pathway-dependent, hierarchical 'click' covalent assembly to produce hybrid synthetic peptide-based polymers. The nanometre-scale monomeric units of these polymers are homotetrameric, α-helical bundles of low-molecular-weight peptides. These bundled monomers, or 'bundlemers', can be designed to provide complete control of the stability, size and spatial display of chemical functionalities. The protein-like structure of the bundle allows precise positioning of covalent linkages between the ends of distinct bundlemers, resulting in polymers with interesting and controllable physical characteristics, such as rigid rods, semiflexible or kinked chains, and thermally responsive hydrogel networks. Chain stiffness can be controlled by varying only the linkage. Furthermore, by controlling the amino acid sequence along the bundlemer periphery, we use specific amino acid side chains, including non-natural 'click' chemistry functionalities, to conjugate moieties into a desired pattern, enabling the creation of a wide variety of hybrid nanomaterials.


Subject(s)
Nanostructures/chemistry , Peptides/chemistry , Polymers/chemistry , Amino Acid Sequence , Drug Design , Proteins/chemistry
2.
Biomacromolecules ; 25(6): 3775-3783, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38717062

ABSTRACT

Unlike naturally derived peptides, computationally designed sequences offer programmed self-assembly and charge display. Herein, new tetrameric, coiled coil-forming peptides were computationally designed ranging from 8 to 29 amino acids in length. Experimental investigations revealed that only the sequences having three or more heptads (i.e., 21 or more amino acids) exhibited coiled coil behavior. The shortest stable coiled coil sequence had a melting temperature (Tm) of approximately 58 ± 1 °C, making it ideal for thermoreversible assembly over moderate temperatures. Effects of pH and monovalent salt were examined, revealing structural stability over a pH range of 4 to 11 and an enhancement in Tm with the addition of salt. The incorporation of the coiled coil as a hydrogel cross-linker results in a thermally and mechanically reversible hydrogel. A subsequent demonstration of the hydrogel printed through a syringe illustrated one of many potential uses from 3D printing to injectable hydrogel drug delivery.


Subject(s)
Hydrogels , Peptides , Peptides/chemistry , Hydrogels/chemistry , Hydrogen-Ion Concentration
3.
Biomacromolecules ; 25(4): 2449-2461, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38484154

ABSTRACT

Peptide-based materials are diverse candidates for self-assembly into modularly designed and stimuli-responsive nanostructures with precisely tunable compositions. Here, we genetically fused computationally designed coiled coil-forming peptides to the N- and C-termini of compositionally distinct multistimuli-responsive resilin-like polypeptides (RLPs) of various lengths. The successful expression of these hybrid polypeptides in bacterial hosts was confirmed through techniques such as gel electrophoresis, mass spectrometry, and amino acid analysis. Circular dichroism spectroscopy and ultraviolet-visible turbidimetry demonstrated that despite the fusion of disparate structural and responsive units, the coiled coils remained stable in the hybrid polypeptides, and the sequence-encoded differences in thermoresponsive phase separation of the RLPs were preserved. Cryogenic transmission electron microscopy and coarse-grained modeling showed that after thermal annealing in solution, the hybrid polypeptides adopted a closed loop conformation and assembled into nanofibrils capable of further hierarchically organizing into cluster structures and ribbon-like structures mediated by the self-association tendency of the RLPs.


Subject(s)
Insect Proteins , Peptides , Peptides/genetics , Peptides/chemistry , Molecular Conformation , Microscopy, Electron, Transmission , Circular Dichroism
4.
Biomacromolecules ; 25(1): 258-271, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38110299

ABSTRACT

Protein hydrogels represent an important and growing biomaterial for a multitude of applications, including diagnostics and drug delivery. We have previously explored the ability to engineer the thermoresponsive supramolecular assembly of coiled-coil proteins into hydrogels with varying gelation properties, where we have defined important parameters in the coiled-coil hydrogel design. Using Rosetta energy scores and Poisson-Boltzmann electrostatic energies, we iterate a computational design strategy to predict the gelation of coiled-coil proteins while simultaneously exploring five new coiled-coil protein hydrogel sequences. Provided this library, we explore the impact of in silico energies on structure and gelation kinetics, where we also reveal a range of blue autofluorescence that enables hydrogel disassembly and recovery. As a result of this library, we identify the new coiled-coil hydrogel sequence, Q5, capable of gelation within 24 h at 4 °C, a more than 2-fold increase over that of our previous iteration Q2. The fast gelation time of Q5 enables the assessment of structural transition in real time using small-angle X-ray scattering (SAXS) that is correlated to coarse-grained and atomistic molecular dynamics simulations revealing the supramolecular assembling behavior of coiled-coils toward nanofiber assembly and gelation. This work represents the first system of hydrogels with predictable self-assembly, autofluorescent capability, and a molecular model of coiled-coil fiber formation.


Subject(s)
Molecular Dynamics Simulation , Proteins , Scattering, Small Angle , X-Ray Diffraction , Proteins/chemistry , Hydrogels
5.
Bioconjug Chem ; 34(11): 2001-2006, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37874177

ABSTRACT

Alkyl halide side groups are selectively incorporated into monodispersed, computationally designed coiled-coil-forming peptide nanoparticles. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) is polymerized from the coiled-coil periphery using photoinitiated atom transfer radical polymerization (photoATRP) to synthesize well-defined, thermoresponsive star copolymer architectures. This facile synthetic route is readily extended to other monomers for a range of new complex star-polymer macromolecules.


Subject(s)
Methacrylates , Polymers , Polymers/chemistry , Polymerization , Methacrylates/chemistry , Water/chemistry
6.
Chem Rev ; 121(22): 13915-13935, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34709798

ABSTRACT

Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form ß-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.


Subject(s)
Nanostructures , Peptides , Nanostructures/chemistry , Peptides/chemistry , Protein Conformation, beta-Strand
7.
Angew Chem Int Ed Engl ; 62(25): e202301331, 2023 06 19.
Article in English | MEDLINE | ID: mdl-36988077

ABSTRACT

Thermoresponsive resilin-like polypeptides (RLPs) of various lengths were genetically fused to two different computationally designed coiled coil-forming peptides with distinct thermal stability, to develop new strategies to assemble coiled coil peptides via temperature-triggered phase separation of the RLP units. Their successful production in bacterial expression hosts was verified via gel electrophoresis, mass spectrometry, and amino acid analysis. Circular dichroism (CD) spectroscopy, ultraviolet-visible (UV/Vis) turbidimetry, and dynamic light scattering (DLS) measurements confirmed the stability of the coiled coils and showed that the thermosensitive phase behavior of the RLPs was preserved in the genetically fused hybrid polypeptides. Cryogenic-transmission electron microscopy and coarse-grained modeling revealed that functionalizing the coiled coils with thermoresponsive RLPs leads to their thermally triggered noncovalent assembly into nanofibrillar assemblies.


Subject(s)
Gene Fusion , Peptides , Protein Structure, Secondary , Peptides/chemistry , Protein Domains , Microscopy, Electron, Transmission , Circular Dichroism
8.
J Am Chem Soc ; 144(22): 9926-9937, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35616998

ABSTRACT

The development of lipid nanoparticle (LNP) formulations for targeting the bone microenvironment holds significant potential for nucleic acid therapeutic applications including bone regeneration, cancer, and hematopoietic stem cell therapies. However, therapeutic delivery to bone remains a significant challenge due to several biological barriers, such as low blood flow in bone, blood-bone marrow barriers, and low affinity between drugs and bone minerals, which leads to unfavorable therapeutic dosages in the bone microenvironment. Here, we construct a series of bisphosphonate (BP) lipid-like materials possessing a high affinity for bone minerals, as a means to overcome biological barriers to deliver mRNA therapeutics efficiently to the bone microenvironment in vivo. Following in vitro screening of BP lipid-like materials formulated into LNPs, we identified a lead BP-LNP formulation, 490BP-C14, with enhanced mRNA expression and localization in the bone microenvironment of mice in vivo compared to 490-C14 LNPs in the absence of BPs. Moreover, BP-LNPs enhanced mRNA delivery and secretion of therapeutic bone morphogenetic protein-2 from the bone microenvironment upon intravenous administration. These results demonstrate the potential of BP-LNPs for delivery to the bone microenvironment, which could potentially be utilized for a range of mRNA therapeutic applications including regenerative medicine, protein replacement, and gene editing therapies.


Subject(s)
Lipids , Nanoparticles , Animals , Diphosphonates/pharmacology , Liposomes , Mice , RNA, Messenger/genetics , RNA, Small Interfering/genetics
9.
Biomacromolecules ; 23(4): 1652-1661, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35312288

ABSTRACT

With the ability to design their sequences and structures, peptides can be engineered to realize a wide variety of functionalities and structures. Herein, computational design was used to identify a set of 17 peptides having a wide range of putative charge states but the same tetrameric coiled-coil bundle structure. Calculations were performed to identify suitable locations for ionizable residues (D, E, K, and R) at the bundle's exterior sites, while interior hydrophobic interactions were retained. The designed bundle structures spanned putative charge states of -32 to +32 in units of electron charge. The peptides were experimentally investigated using spectroscopic and scattering techniques. Thermal stabilities of the bundles were investigated using circular dichroism. Molecular dynamics simulations assessed structural fluctuations within the bundles. The cylindrical peptide bundles, 4 nm long by 2 nm in diameter, were covalently linked to form rigid, micron-scale polymers and characterized using transmission electron microscopy. The designed suite of sequences provides a set of readily realized nanometer-scale structures of tunable charge that can also be polymerized to yield rigid-rod polyelectrolytes.


Subject(s)
Peptides , Polymers , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Peptides/chemistry , Polymers/chemistry
10.
Molecules ; 27(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35209027

ABSTRACT

Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission
11.
J Am Chem Soc ; 143(31): 12315-12327, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34324336

ABSTRACT

Efficient viral or nonviral delivery of nucleic acids is the key step of genetic nanomedicine. Both viral and synthetic vectors have been successfully employed for genetic delivery with recent examples being DNA, adenoviral, and mRNA-based Covid-19 vaccines. Viral vectors can be target specific and very efficient but can also mediate severe immune response, cell toxicity, and mutations. Four-component lipid nanoparticles (LNPs) containing ionizable lipids, phospholipids, cholesterol for mechanical properties, and PEG-conjugated lipid for stability represent the current leading nonviral vectors for mRNA. However, the segregation of the neutral ionizable lipid as droplets in the core of the LNP, the "PEG dilemma", and the stability at only very low temperatures limit their efficiency. Here, we report the development of a one-component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine concentration, their sequence, and constitutional isomerism of IAJDs.


Subject(s)
Dendrimers/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , RNA, Messenger/metabolism , Surface-Active Agents/chemistry , Animals , Dendrimers/chemical synthesis , Drug Carriers/chemical synthesis , Drug Liberation , Female , HEK293 Cells , Humans , Male , Mice , Proof of Concept Study , Surface-Active Agents/chemical synthesis
12.
J Am Chem Soc ; 141(37): 14916-14930, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31497951

ABSTRACT

In this paper, we present a computational reverse-engineering analysis for scattering experiments (CREASE) based on genetic algorithms and molecular simulation to analyze the structure within self-assembled amphiphilic polymer solutions. For a given input comprised of scattering intensity profiles and information about the amphiphilic polymers in solution, CREASE outputs the structure of the self-assembled micelles (e.g., core and corona diameters, aggregation number) as well as the conformations of the amphiphilic polymer chains in the micelle (e.g., blocks' radii of gyration, chain radii of gyration, monomer concentration profiles). First, we demonstrate CREASE's ability to reverse-engineer self-assembled nanostructures for scattering profiles obtained from molecular simulations (or in silico experiments) of generic coarse-grained bead-spring polymer chains in an implicit solvent. We then present CREASE's outputs for scattering profiles obtained from small-angle neutron scattering (SANS) experiments of poly(d-glucose carbonate) block copolymers in solution that exhibit assembly into spherical nanoparticles. The success of this method is demonstrated by its ability to replicate, quantitatively, the results from in silico experiments and by the agreement in micelle core and corona sizes obtained from microscopy of the in vitro solutions. The primary strength of CREASE is its ability to analyze scattering profiles without an off-the-shelf scattering model and the ability to provide chain and monomer level structural information that is otherwise difficult to obtain from scattering and microscopy alone.

13.
Langmuir ; 35(17): 5802-5808, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30955339

ABSTRACT

The model peptides A8K and A10K self-assemble in water into ca. 100 nm long ribbon-like aggregates. These structures can be described as ß-sheets laminated into a ribbon structure with a constant elliptical cross-section of 4 by 8 nm, where the longer axis corresponds to a finite number, N ≈ 15, of laminated sheets, and 4 nm corresponds to a stretched peptide length. The ribbon cross-section is strikingly constant and independent of the peptide concentration. High-contrast transmission electron microscopy shows that the ribbons are twisted with a pitch λ ≈ 15 nm. The self-assembly is analyzed within a simple model taking into account the interfacial free energy of the hydrophobic ß-sheets and a free energy penalty arising from an increased stretching of hydrogen bonds within the laminated ß-sheets, arising from the twist of the ribbons. The model predicts an optimal value N, in agreement with the experimental observations.


Subject(s)
Oligopeptides/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Protein Conformation, beta-Strand , Protein Multimerization , Protein Structure, Quaternary , Thermodynamics
15.
Soft Matter ; 15(48): 9858-9870, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31738361

ABSTRACT

Short α-helical peptides were computationally designed to self-assemble into robust coiled coils that are antiparallel, homotetrameric bundles. These peptide bundle units, or 'bundlemers', have been utilized as anisotropic building blocks to construct bundlemer-based polymers via a hierarchical, hybrid physical-covalent assembly pathway. The bundlemer chains were constructed using short linker connections via 'click' chemistry reactions between the N-termini of bundlemer constituent peptides. The resulting bundlemer chains appear as extremely rigid, cylindrical rods in transmission electron microscopy (TEM) images. Small angle neutron scattering (SANS) shows that these bundlemer chains exist as individual rods in solution with a cross-section that is equal to that of a single coiled coil bundlemer building block of ≈20 Å. SANS further confirms that the interparticle solution structure of the rigid rod bundlemer chains is heterogeneous and responsive to solution conditions, such as ionic-strength and pH. Due to their peptidic constitution, the bundlemer assemblies behave like polyelectrolytes that carry an average charge density of approximately 3 charges per bundlemer as determined from SANS structure factor data fitting, which describes the repulsion between charged rods in solution. This repulsion manifests as a correlation hole in the scattering profile that is suppressed by dilution or addition of salt. Presence of rod cluster aggregates with a mass fractal dimension of ≈2.5 is also confirmed across all samples. The formation of such dense, fractal-like cluster aggregates in a solution of net repulsive rods is a unique example of the subtle balance between short-range attraction and long-rage repulsion interactions in proteins and other biomaterials. With computational control of constituent peptide sequences, it is further possible to deconvolute the underlying sequence driven structure-property relationships in the modular bundlemer chains.


Subject(s)
Peptides/chemistry , Polyelectrolytes/chemistry , Microscopy, Electron, Transmission
16.
Biomacromolecules ; 19(11): 4286-4298, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30299090

ABSTRACT

Computationally designed peptides form desired antiparallel, tetrameric coiled-coil bundles that hierarchically assemble into a variety of well-controlled nanostructures depending on aqueous solution conditions. The bundles selectively self-assemble into different structures: nanotubes, platelets, or needle-like structures at solution pH values of 4.5, 7, and 10, respectively. The self-assembly produces hollow tubes or elongated needle-like structures at pH conditions associated with charged bundles (pH 4.5 or 10); at neutral pH, near the pI of the bundle, a plate-like self-assembled structure forms. Transmission electron microscopy and small-angle X-ray scattering show the nanotubes to be uniform with a tube diameter of ∼13 nm and lengths of up to several µm, yielding aspect ratios >1000. Combining the measured nanostructure geometry with the apparent charged states of the constituent amino acids, a tilted-bundle packing model is proposed for the formation of the homogeneous nanotubes. This work demonstrates the successful use of assembly pathway control for the construction of nanostructures with diverse, well-structured morphologies associated with the folding and self-association of a single type of molecule.


Subject(s)
Computational Biology , Nanostructures/chemistry , Nanotubes/chemistry , Peptide Fragments/chemistry , Water/chemistry , Amino Acid Sequence , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Sequence Homology
17.
Soft Matter ; 14(26): 5488-5496, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29923575

ABSTRACT

Coiled-coil peptides have proven useful in a range of materials applications ranging from the formation of well-defined fibrils to responsive hydrogels. The ability to design from first principles their oligomerization and subsequent higher order assembly offers their expanded use in producing new materials. Toward these ends, homo-tetrameric, antiparallel, coiled-coil, peptide bundles have been designed computationally, synthesized via solid-phase methods, and their solution behavior characterized. Two different bundle-forming peptides were designed and examined. Within the targeted coiled coil structure, both bundles contained the same hydrophobic core residues. However, different exterior residues on the two different designs yielded sequences with different distributions of charged residues and two different expected isoelectric points of pI 4.4 and pI 10.5. Both coiled-coil bundles were extremely stable with respect to temperature (Tm > 80 C) and remained soluble in solution even at high (millimolar) peptide concentrations. The coiled-coil tetramer was confirmed to be the dominant species in solution by analytical sedimentation studies and by small-angle neutron scattering, where the scattering form factor is well represented by a cylinder model with the dimensions of the targeted coiled coil. At high concentrations (5-15 mM), evidence of interbundle structure was observed via neutron scattering. At these concentrations, the synthetic bundles form soluble aggregates, and interbundle distances can be determined via a structure factor fit to scattering data. The data support the successful design of robust coiled-coil bundles. Despite their different sequences, each sequence forms loosely associated but soluble aggregates of the bundles, suggesting similar dissociated states for each. The behavior of the dispersed bundles is similar to that observed for natural proteins.


Subject(s)
Computer-Aided Design , Peptides/chemistry , Amino Acid Sequence , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Aggregates , Protein Structure, Secondary , Solubility
18.
Anal Biochem ; 535: 25-34, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28757092

ABSTRACT

Automated cell-based high-throughput screening (HTS) is a powerful tool in drug discovery, and it is increasingly being recognized that three-dimensional (3D) models, which more closely mimic in vivo-like conditions, are desirable screening platforms. One limitation hampering the development of 3D HTS is the lack of suitable 3D culture scaffolds that can readily be incorporated into existing HTS infrastructure. We now show that ß-hairpin peptide hydrogels can serve as a 3D cell culture platform that is compatible with HTS. MAX8 ß-hairpin peptides can physically assemble into a hydrogel with defined porosity, permeability and mechanical stability with encapsulated cells. Most importantly, the hydrogels can then be injected under shear-flow and immediately reheal into a hydrogel with the same properties exhibited prior to injection. The post-injection hydrogels are cell culture compatible at physiological conditions. Using standard HTS equipment and medulloblastoma pediatric brain tumor cells as a model system, we show that automatic distribution of cell-peptide mixtures into 384-well assay plates results in evenly dispensed, viable MAX8-cell constructs suitable for commercially available cell viability assays. Since MAX8 peptides can be functionalized to mimic the microenvironment of cells from a variety of origins, MAX8 peptide gels should have broad applicability for 3D HTS drug discovery.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Culture Techniques/methods , Drug Discovery , High-Throughput Screening Assays , Hydrogels/chemical synthesis , Peptides/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrogels/chemistry , Peptides/chemical synthesis , Rheology , Structure-Activity Relationship , Tumor Cells, Cultured
19.
Org Biomol Chem ; 15(29): 6109-6118, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28639674

ABSTRACT

Natural biomolecular self-assembly typically occurs under a narrow range of solution conditions, and the design of sequences that can form prescribed structures under a range of such conditions would be valuable in the bottom-up assembly of predetermined nanostructures. We present a computationally designed peptide that robustly self-assembles into regular arrays under a wide range of solution pH and temperature conditions. Controling the solution conditions provides the opportunity to exploit a simple and reproducible approach for altering the pathway of peptide solution self-assembly. The computationally designed peptide forms a homotetrameric coiled-coil bundle that further self-assembles into 2-D plate structures with well-defined inter-bundle symmetry. Herein, we present how modulation of solution conditions, such as pH and temperature, can be used to control the kinetics of the inter-bundle assembly and manipulate the final morphology. Changes in solution pH primarily influence the inter-bundle assembly by affecting the charged state of ionizable residues on the bundle exterior while leaving the homotetrameric coiled-coil structure intact. At low pH, repulsive interactions prevent 2-D lattice nanostructure formation. Near the estimated isoelectric point of the peptide, bundle aggregation is rapid and yields disordered products, which subsequently transform into ordered nanostructures over days to weeks. At elevated temperatures (T = 40 °C or 50 °C), the formation of disordered, kinetically-trapped products largely can be eliminated, allowing the system to quickly assemble into plate-like nanostructured lattices. Moreover, subtle changes in pH and in the peptide charge state have a significant influence on the thickness of formed plates and on the hierarchical manner in which plates fuse into larger material structures with observable grain boundaries. These findings confirm the ability to finely tune the peptide assembly process to achieve a range of engineered structures with one simple 29-residue peptide building block.


Subject(s)
Molecular Dynamics Simulation , Peptides/chemical synthesis , Hydrogen-Ion Concentration , Kinetics , Nanostructures/chemistry , Peptides/chemistry , Protein Aggregates , Temperature
20.
Proc Natl Acad Sci U S A ; 111(25): 9058-63, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24927561

ABSTRACT

A constitutional isomeric library synthesized by a modular approach has been used to discover six amphiphilic Janus dendrimer primary structures, which self-assemble into uniform onion-like vesicles with predictable dimensions and number of internal bilayers. These vesicles, denoted onion-like dendrimersomes, are assembled by simple injection of a solution of Janus dendrimer in a water-miscible solvent into water or buffer. These dendrimersomes provide mimics of double-bilayer and multibilayer biological membranes with dimensions and number of bilayers predicted by the Janus compound concentration in water. The simple injection method of preparation is accessible without any special equipment, generating uniform vesicles, and thus provides a promising tool for fundamental studies as well as technological applications in nanomedicine and other fields.


Subject(s)
Biomimetic Materials/chemistry , Dendrimers/chemistry , Lipid Bilayers
SELECTION OF CITATIONS
SEARCH DETAIL