Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Proc Natl Acad Sci U S A ; 120(34): e2309374120, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37590405

ABSTRACT

Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size [Formula: see text] and a propagation velocity [Formula: see text] ([Formula: see text] is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent frictional systems. We show that slip pulses are intrinsically unsteady objects-in agreement with previous findings-yet their dynamical evolution is closely related to their unstable steady-state counterparts. In particular, we show that each point along the time-independent [Formula: see text] line, obtained from a family of steady-state pulse solutions parameterized by the driving shear stress [Formula: see text], is unstable. Nevertheless, and remarkably, the [Formula: see text] line is a dynamic attractor such that the unsteady dynamics of slip pulses (when they exist)-whether growing ([Formula: see text]) or decaying ([Formula: see text])-reside on the steady-state line. The unsteady dynamics along the line are controlled by a single slow unstable mode. The slow dynamics of growing pulses, manifested by [Formula: see text], explain the existence of sustained pulses, i.e., pulses that propagate many times their characteristic size without appreciably changing their properties. Our theoretical picture of unsteady frictional slip pulses is quantitatively supported by large-scale, dynamic boundary-integral method simulations.

2.
Phys Rev Lett ; 131(15): 156705, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37897789

ABSTRACT

Nonlinear interactions are crucial in science and engineering. Here, we investigate wave interactions in a highly nonlinear magnetic system driven by parametric pumping leading to Bose-Einstein condensation of spin-wave quanta-magnons. Using Brillouin light scattering spectroscopy in yttrium-iron garnet films, we found and identified a set of nonlinear processes resulting in off-resonant spin-wave excitations-virtual magnons. In particular, we discovered a dynamically strong, correlation-enhanced four-wave interaction process of the magnon condensate with pairs of parametric magnons having opposite wave vectors and fully correlated phases.

3.
Philos Trans A Math Phys Eng Sci ; 380(2219): 20210094, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35094563

ABSTRACT

We develop a theory of strong anisotropy of the energy spectra in the thermally driven turbulent counterflow of superfluid 4He. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy flux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by our numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiments, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is part of the theme issue 'Scaling the turbulence edifice (part 2)'.

4.
Phys Rev Lett ; 121(7): 077203, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169064

ABSTRACT

Evolution of an overpopulated gas of magnons to a Bose-Einstein condensate and excitation of a magnon supercurrent, propelled by a phase gradient in the condensate wave function, can be observed at room temperature by means of the Brillouin light scattering spectroscopy in an yttrium iron garnet material. We study these phenomena in a wide range of external magnetic fields in order to understand their properties when externally pumped magnons are transferred towards the condensed state via two distinct channels: a multistage Kolmogorov-Zakharov cascade of the weak-wave turbulence or a one-step kinetic instability process. Our main result is that opening the kinetic instability channel leads to the formation of a much denser magnon condensate and to a stronger magnon supercurrent compared to the cascade mechanism alone.

5.
Phys Rev Lett ; 118(23): 237201, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644646

ABSTRACT

An ensemble of magnons, quanta of spin waves, can be prepared as a Bose gas of weakly interacting quasiparticles. Furthermore, the thermalization of the overpopulated magnon gas through magnon-magnon scattering processes, which conserve the number of particles, can lead to the formation of a Bose-Einstein condensate at the bottom of a spin-wave spectrum. However, magnon-phonon scattering can significantly modify this scenario and new quasiparticles are formed-magnetoelastic bosons. Our observations of a parametrically populated magnon gas in a single-crystal film of yttrium iron garnet by means of wave-vector-resolved Brillouin light scattering spectroscopy evidence a novel condensation phenomenon: A spontaneous accumulation of hybrid magnetoelastic bosonic quasiparticles at the intersection of the lowest magnon mode and a transversal acoustic wave.

6.
Phys Rev E ; 109(4-1): 044902, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755894

ABSTRACT

In recent work it was shown that elasticity theory can break down in amorphous solids subjected to nonuniform static loads. The elastic fields are screened by geometric dipoles; these stem from gradients of the quadrupole field associated with plastic responses. Here we study the dynamical responses induced by oscillatory loads. The required modification to classical elasticity is described. Exact solutions for the displacement field in circular geometry are presented, demonstrating that dipole screening results in essential departures from the expected predictions of classical elasticity theory. Numerical simulations are conducted to validate the theoretical predictions and to delineate their range of validity.

7.
Phys Rev Lett ; 110(1): 014502, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23383797

ABSTRACT

We consider the intermittent behavior of superfluid turbulence in (4)He. Because of the similarity in the nonlinear structure of the two-fluid model of superfluidity and the Euler and Navier-Stokes equations, one expects the scaling exponents of the structure functions to be the same as in classical turbulence for temperatures close to the superfluid transition T(λ) and also for T << T(λ). This is not the case when the densities of normal and superfluid components are comparable to each other and mutual friction becomes important. Using shell model simulations, we propose that in this situation there exists a range of scales in which the effective exponents indicate stronger intermittency. We offer a bridge relation between these effective and the classical scaling exponents. Since this effect occurs at accessible temperatures and Reynolds numbers, we propose that experiments should be conducted to further assess the validity and implications of this prediction.

8.
Phys Rev E ; 107(1): L013001, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797875

ABSTRACT

A prominent spatiotemporal failure mode of frictional systems is self-healing slip pulses, which are propagating solitonic structures that feature a characteristic length. Here, we numerically derive a family of steady state slip pulse solutions along generic and realistic rate-and-state dependent frictional interfaces, separating large deformable bodies in contact. Such nonlinear interfaces feature a nonmonotonic frictional strength as a function of the slip velocity, with a local minimum. The solutions exhibit a diverging length and strongly inertial propagation velocities, when the driving stress approaches the frictional strength characterizing the local minimum from above, and change their character when it is away from it. An approximate scaling theory quantitatively explains these observations. The derived pulse solutions also exhibit significant spatially-extended dissipation in excess of the edge-localized dissipation (the effective fracture energy) and an unconventional edge singularity. The relevance of our findings for available observations is discussed.

9.
Phys Rev Lett ; 108(7): 074501, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401207

ABSTRACT

Fractal decimation reduces the effective dimensionality D of a flow by keeping only a (randomly chosen) set of Fourier modes whose number in a ball of radius k is proportional to k(D) for large k. At the critical dimension D(c)=4/3 there is an equilibrium Gibbs state with a k(-5/3) spectrum, as in V. L'vov et al., Phys. Rev. Lett. 89, 064501 (2002). Spectral simulations of fractally decimated two-dimensional turbulence show that the inverse cascade persists below D=2 with a rapidly rising Kolmogorov constant, likely to diverge as (D-4/3)(-2/3).

10.
Phys Rev E ; 104(4-1): 044903, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781500

ABSTRACT

"Remote triggering" refers to the inducement of earthquakes by weak perturbations that emanate from faraway sources, typically intense earthquakes that happen at much larger distances than their nearby aftershocks, sometimes even around the globe. Here, we propose a mechanism for this phenomenon; the proposed mechanism is generic, resulting from the breaking of Hamiltonian symmetry due to the existence of friction. We allow a transition from static to dynamic friction. Linearly stable stressed systems display giant sensitivity to small perturbations of arbitrary frequency (without a need for resonance), which trigger an instability with exponential oscillatory growth. Once nonlinear effects kick in, the blow up in mean-square displacements can reach 15-20 orders of magnitude. Analytic and numerical results of the proposed model are presented and discussed.

11.
Nat Commun ; 10(1): 2460, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31165731

ABSTRACT

A macroscopic collective motion of a Bose-Einstein condensate (BEC) is commonly associated with phenomena such as superconductivity and superfluidity, often generalised by the term supercurrent. Another type of motion of a quantum condensate is second sound-a wave of condensate's parameters. Recently, we reported on the decay of a BEC of magnons caused by a supercurrent outflow of the BEC from the locally heated area of a room temperature magnetic film. Here, we present the observation of a macroscopic BEC transport mechanism related to the excitation of second sound. The condensed magnons, being propelled out of the heated area, form compact humps of BEC density, which propagate many hundreds of micrometers in the form of distinct second sound-Bogoliubov waves. This discovery advances the physics of quasiparticles and allows for the application of related transport phenomena for low-loss data transfer in magnon spintronics devices.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 2): 027101, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18850976

ABSTRACT

A free material surface which supports surface diffusion becomes unstable when put under external nonhydrostatic stress. Since the chemical potential on a stressed surface is larger inside an indentation, small shape fluctuations develop because material preferentially diffuses out of indentations. When the bulk of the material is purely elastic one expects this instability to run into a finite-time cusp singularity. It is shown here that this singularity is cured by plastic effects in the material, turning the singular solution to a regular crack.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 2): 016303, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16486273

ABSTRACT

We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable parameters. Two of these parameters are responsible for the viscous dissipation of the components of the Reynolds stress tensor. The other two parameters control the nonlinear relaxation of these objects. The model offers an analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in the entire boundary region, from the viscous sublayer, through the buffer layer, and further into the log-law turbulent region. In particular, the model predicts a very simple distribution of the turbulent kinetic energy in the log-law region between the velocity components: the streamwise component contains a half of the total energy whereas the wall-normal and cross-stream components contain a quarter each. In addition, the model predicts a very simple relation between the von Kármán slope k and the turbulent velocity in the log-law region v+ (in wall units): v+=6k. These predictions are in excellent agreement with direct numerical simulation data and with recent laboratory experiments.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 2): 016305, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15697720

ABSTRACT

The interaction of polymers with turbulent shear flows is examined. We focus on the structure of the elastic stress tensor, which is proportional to the polymer conformation tensor. We examine this object in turbulent flows of increasing complexity. First is isotropic turbulence, then anisotropic (but homogenous) shear turbulence, and finally wall bounded turbulence. The main result of this paper is that for all these flows the polymer stress tensor attains a universal structure in the limit of large Deborah number De >> 1. We present analytic results for the suppression of the coil-stretch transition at large Deborah numbers. Above the transition the turbulent velocity fluctuations are strongly correlated with the polymer's elongation: there appear high-quality "hydroelastic" waves in which turbulent kinetic energy turns into polymer potential energy and vice versa. These waves determine the trace of the elastic stress tensor but practically do not modify its universal structure. We demonstrate that the influence of the polymers on the balance of energy and momentum can be accurately described by an effective polymer viscosity that is proportional to the cross-stream component of the elastic stress tensor. This component is smaller than the streamwise component by a factor proportional to De2. Finally we tie our results to wall bounded turbulence and clarify some puzzling facts observed in the problem of drag reduction by polymers.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(3 Pt 2): 036303, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14524886

ABSTRACT

We analyze numerically the time-dependent linear operators that govern the dynamics of Eulerian correlation functions of a decaying passive scalar advected by a stationary, forced two-dimensional Navier-Stokes turbulence. We show how to naturally discuss the dynamics in terms of effective compact operators that display Eulerian statistically preserved structures which determine the anomalous scaling of the correlation functions. In passing we point out a bonus of the present approach, in providing analytic predictions for the time-dependent correlation functions in decaying turbulent transport.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(4 Pt 2): 046308, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14683045

ABSTRACT

We suggested a multizone shell (MZS) model for wall-bounded flows accounting for the space inhomogeneity in a piecewise approximation, in which the cross-sectional area of the flow, S, is subdivided into j zones. The area of the first zone, responsible for the core of the flow, S1 approximately S/2, and the areas of the next j zones, S(j), decrease toward the wall like S(j) proportional, variant 2(-j). In each j zone the statistics of turbulence is assumed to be space homogeneous and is described by the set of shell velocities u(nj)(t) for turbulent fluctuations of the scale proportional to 2(-n). The MZS model includes a set of complex variables V(j)(t), j=1,2, em leader, infinity, describing the amplitudes of the near-wall coherent structures of the scale s(j) approximately 2(-j) and responsible for the mean velocity profile. The suggested MZS equations of motion for u(nj)(t) and V(j)(t) preserve the actual conservation laws (energy, mechanical, and angular momenta), respect the existing symmetries (including Galilean and scale invariance), and account for the type of nonlinearity in the Navier-Stokes equation, dimensional reasoning, etc. The MZS model qualitatively describes important characteristics of the wall-bounded turbulence, e.g., evolution of the mean velocity profile with increasing Reynolds number Re from the laminar profile toward the universal logarithmic profile near the flat-plane boundary layer as Re--> infinity.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(4 Pt 2): 046314, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12786494

ABSTRACT

We propose a one-fluid analytical model for a turbulently flowing dilute suspension, based on a modified Navier-Stokes equation with a k-dependent effective density of suspension rho(eff)(k) and an additional damping term proportional, variant gamma(p)(k), representing the fluid-particle friction (described by Stokes law). The statistical description of turbulence within the model is simplified by a modification of the usual closure procedure based on the Richardson-Kolmogorov picture of turbulence with a differential approximation for the energy transfer term. The resulting ordinary differential equation for the energy budget is solved analytically for various important limiting cases and numerically in the general case. In the inertial interval of scales, we describe analytically two competing effects: the energy suppression due to the fluid-particle friction and the energy enhancement during the cascade process due to decrease of the effective density of the small-scale motions. An additional suppression or enhancement of the energy density may occur in the viscous subrange, caused by the variation of the extent of the inertial interval due to the combined effect of the fluid-particle friction and the decrease of the kinematic viscosity of the suspensions. The analytical description of the complicated interplay of these effects supported by numerical calculations is presented. Our findings allow one to rationalize the qualitative picture of the isotropic homogeneous turbulence of dilute suspensions as observed in direct numerical simulations.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(6 Pt 2): 066310, 2003 Jun.
Article in English | MEDLINE | ID: mdl-16241351

ABSTRACT

The weak version of universality in turbulence refers to the independence of the scaling exponents of the nth order structure functions from the statistics of the forcing. The strong version includes universality of the coefficients of the structure functions in the isotropic sector, once normalized by the mean energy flux. We demonstrate that shell models of turbulence exhibit strong universality for both forced and decaying turbulence. The exponents and the normalized coefficients are time independent in decaying turbulence, forcing independent in forced turbulence, and equal for decaying and forced turbulence. We conjecture that this is also the case for Navier-Stokes turbulence.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 055301, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15600679

ABSTRACT

Drag reduction by polymers in turbulent flows raises an apparent contradiction: the stretching of the polymers must increase the viscosity, so why is the drag reduced? A recent theory proposed that drag reduction, in agreement with experiments, is consistent with the effective viscosity growing linearly with the distance from the wall. With this self-consistent solution the reduction in the Reynolds stress overwhelms the increase in viscous drag. In this Rapid Communication we show, using direct numerical simulations, that a linear viscosity profile indeed reduces the drag in agreement with the theory and in close correspondence with direct simulations of the FENE-P model at the same flow conditions.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(6 Pt 2): 066319, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20365279

ABSTRACT

Finite-dimensional wave turbulence refers to the chaotic dynamics of interacting wave "clusters" consisting of finite number of connected wave triads with exact three-wave resonances. We examine this phenomenon using the example of atmospheric planetary (Rossby) waves. It is shown that the dynamics of the clusters is determined by the types of connections between neighboring triads within a cluster; these correspond to substantially different scenarios of energy flux between different triads. All the possible cases of the energy cascade termination are classified. Free and forced chaotic dynamics in the clusters are investigated: due to the huge fluctuations of the energy exchange between resonant triads these two types of evolution have a lot in common. It is confirmed that finite-dimensional wave turbulence in finite wave systems is fundamentally different from kinetic wave turbulence in infinite systems; the latter is described by wave-kinetic equations that account for interactions with overlapping quasiresonances of finite amplitude waves. The present results are directly applicable to finite-dimensional wave turbulence in any wave system in finite domains with three-mode interactions as encountered in hydrodynamics, astronomy, plasma physics, chemistry, medicine, etc.

SELECTION OF CITATIONS
SEARCH DETAIL