Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Eukaryot Microbiol ; 70(5): e12977, 2023.
Article in English | MEDLINE | ID: mdl-37051778

ABSTRACT

The aphelids, intracellular parasitoids of algae, represent a large cluster of species sister to Fungi in molecular phylogenetic trees. Sharing a common ancestor with Fungi, they are very important in terms of evolution of these groups of Holomycota. Aphelid life cycle being superficially similar to that of Chytridiomycetes is understudied. We have found in the aphelids a new stage-big multiflagellar and amoeboid cells, formed from a plasmodium that has two sorts of nuclei after trophic stage fusion. The families of protein-coding genes involved in the vegetative cell fusion in Opisthokonta were also discussed.


Subject(s)
Chytridiomycota , Eukaryota , Animals , Phylogeny , Cell Fusion , Fungi , Life Cycle Stages
2.
Gene ; 921: 148520, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38702020

ABSTRACT

A phylogenetic analysis of transcription factors of the Sox-Tcf/Lef-Mata (STM) family of the HMG-B superfamily was carried out in order to clarify the evolutionary roots of the Wnt signaling pathway in unicellular organisms. The data set for analysis included protein sequences of metazoans, fungi, unicellular opisthokonts, apusomonads and amoebozoans. The topology of the phylogenetic tree suggests that STM-related proteins arose in the common ancestor of Opisthokonta and Amoebozoa, two of amoebozoan STM proteins are sister-related to opisthokont ones and the three known lineages of STM transcription factors (STM family in narrow sence) are found in Opisthokonta only. Of these, the holozoan Sox protein branch is the result of either the first or second branching, that originated in the common ancestor of Opisthokonta. The lineage containing Tcf/Lef proteins (holozoan) and the lineage containing Mata proteins (holomycotan) are sister. They derived either at the time of the Holozoa and Holomycota divergence or originate from two paralogs of the common ancestor of Opisthokonta, which arose after the separation of the Sox lineage. Interaction with Armadillo-like proteins may be an original feature of the STM protein family and existed in the unicellular ancestors of multicellular animals; a connection is possible between the presence of Mata-related proteins in Aphelidium protococcorum and specific genome feature of this species.


Subject(s)
Evolution, Molecular , Phylogeny , Animals , Fungi/genetics , Fungi/metabolism , HMGB Proteins/genetics , HMGB Proteins/metabolism , SOX Transcription Factors/genetics , SOX Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Wnt Signaling Pathway
3.
J Fungi (Basel) ; 9(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37888277

ABSTRACT

Aphelids are a holomycotan group, represented exclusively by parasitoids infecting algae. They form a sister lineage to Fungi in the phylogenetic tree and represent a key group for reconstruction of the evolution of Holomycota and for analysis of the origin of Fungi. The newly assembled genome of Aphelidium insullamus (Holomycota, Aphelida) with a total length of 18.9 Mb, 7820 protein-coding genes and a GC percentage of 52.05% was obtained by a hybrid assembly based on Oxford Nanopore long reads and Illumina paired reads. In order to trace the origin and the evolution of fungal osmotrophy and its presence or absence in Aphelida, we analyzed the set of main fungal transmembrane transporters, which are proteins of the Major Facilitator superfamily (MFS), in the predicted aphelid proteomes. This search has shown an absence of a specific fungal protein family Drug:H+ antiporters-2 (DAH-2) and specific fungal orthologs of the sugar porters (SP) family, and the presence of common opisthokont's orthologs of the SP family in four aphelid genomes. The repertoire of SP orthologs in aphelids turned out to be less diverse than in free-living opisthokonts, and one of the most limited among opisthokonts. We argue that aphelids do not show signs of similarity with fungi in terms of their osmotrophic abilities, despite the sister relationships of these groups. Moreover, the osmotrophic abilities of aphelids appear to be reduced in comparison with free-living unicellular opisthokonts. Therefore, we assume that the evolution of fungi-specific traits began after the separation of fungal and aphelid lineages, and there are no essential reasons to consider aphelids as a prototype of the fungal ancestor.

4.
Curr Biol ; 32(21): 4607-4619.e7, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36126656

ABSTRACT

Over the past decade, molecular phylogenetics has reshaped our understanding of the fungal tree of life by unraveling a hitherto elusive diversity of the protistan relatives of Fungi. Aphelida constitutes one of these novel deep branches that precede the emergence of osmotrophic fungal lifestyle and hold particular significance as the pathogens of algae. Here, we obtain and analyze the genomes of aphelid species Amoeboaphelidium protococcarum and Amoeboaphelidium occidentale. Genomic data unmask the vast divergence between these species, hidden behind their morphological similarity, and reveal hybrid genomes with a complex evolutionary history in two strains of A. protococcarum. We confirm the proposed sister relationship between Aphelida and Fungi using phylogenomic analysis and chart the reduction of characteristic proteins involved in phagocytic activity in the evolution of Holomycota. Annotation of aphelid genomes demonstrates the retention of actin nucleation-promoting complexes associated with phagocytosis and amoeboid motility and also reveals a conspicuous expansion of receptor-like protein kinases, uncharacteristic of fungal lineages. We find that aphelids possess multiple carbohydrate-processing enzymes that are involved in fungal cell wall synthesis but do not display rich complements of algal cell-wall-processing enzymes, suggesting an independent origin of fungal plant-degrading capabilities. Aphelid genomes show that the emergence of Fungi from phagotrophic ancestors relied on a common cell wall synthetic machinery but required a different set of proteins for digestion and interaction with the environment.


Subject(s)
Eukaryota , Genomics , Eukaryota/physiology , Phylogeny , Plants/genetics , Fungi/genetics , Fungi/metabolism , Genome, Fungal , Evolution, Molecular
5.
J Morphol ; 277(7): 925-34, 2016 07.
Article in English | MEDLINE | ID: mdl-27091517

ABSTRACT

Every large clade of Eukarya has its own pattern of kinetid (flagellar apparatus) structure, which is stable and specific within the group, thereby being a good phylogenetic marker. The kinetid structure of sponge choanocytes might be a candidate for such marker for the phylogeny of Porifera. Kinetids of two heteroscleromorphs, Halichondria sp. (Suberitida) and Crellomima imparidens (Poecilosclerida), have been investigated here for the first time, and a reconstruction of the kinetid for each species is provided. The kinetids of both species comprise a flagellar kinetosome with a nuclear fibrillar root, a basal foot and satellite producing microtubules; a centriole is absent. Good resolution images reveal a new thin structure, the axial granule, in the flagellar transition zone which might be present in other sponges. The comparison of kinetids in investigated sponges revealed three types of kinetid in Demospongiae, and their distribution in the taxon has been shown on a molecular phylogenetic tree. Kinetid characters of the common ancestor of Demospongiae are discussed. J. Morphol. 277:925-934, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biological Evolution , Centrioles/ultrastructure , Microtubules/ultrastructure , Porifera/ultrastructure , Animals , Phylogeny , Porifera/classification
SELECTION OF CITATIONS
SEARCH DETAIL