Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Affiliation country
Publication year range
1.
Genomics ; 114(4): 110403, 2022 07.
Article in English | MEDLINE | ID: mdl-35709926

ABSTRACT

BACKGROUND: Keloid is a benign proliferative disease characterized by excessive deposition of extracellular matrix collagen during skin wound healing. The mechanisms of keloid formation have not been fully elucidated, and the current treatment methods are not effective for all keloid patients. Therefore, there is an urgent need to find more effective therapies, and our research focused on identifying characteristic molecular signatures of keloid to explore potential therapeutic targets. METHODS: Gene expression profiles of keloid and control group samples were retrieved from the GEO database. Taking the GSE113619 dataset as the training set, the dataset collected skin tissues from non-lesion sites of healthy and keloid-prone individuals, denoted as Day0. The second sampling was performed 42 days later at the original sampling site of control and keloid groups, denoted as Day42.The 'limma' package and Venn diagram identified differentially expressed genes (DEGs) specific to keloid day42 versus day0 samples. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathway functional enrichment, and annotation of the characteristic genes were conducted on the Metascape website. Ingenuity canonical pathways, disease & function enrichment analysis and gene interaction network were performed and predicted in Ingenuity Pathway Analysis (IPA) software. Key module genes related to keloid were filtered out by Weighted Gene Co-expression Network Analysis (WGCNA). We utilized the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to screen the characteristic genes in keloid by the 'glmnet' package. The area under the curve (AUC) of receiver operating characteristic (ROC) was utilized to determine the effectiveness of potential signatures in discriminating keloid samples from normal samples and performed by using the 'pROC' package. The enrich scores of 24 immune cells in each sample were calculated by the single-sample gene set enrichment analysis (ssGSEA) algorithm, and then the Gene Set Variation Analysis (GSVA) was performed. Finally, RNA from 4 normal and 6 keloid samples was extracted, and RT-qPCR and Western Blot validated the expression of characteristic genes. RESULTS: A total of 640 DEGs specific to keloid day42 versus day0 samples were detected. 69 key module genes were uncovered and implicated in 'NCAM signaling for neurite out-growth', 'oncogenic MAPK signaling', 'transmission across chemical synapses' pathways, and the mitotic cell cycle-related processes. Five characteristic genes (MTUS1, UNC5C, CEP57, NAA35, and HOXD3) of keloid were identified by LASSO, and among which UNC5C and HOXD3 were validated by ROC plot in external dataset, RT-qPCR and Western Blot in validation samples. The result of ssGSEA indicated that the infiltration of neutrophils showed a relatively higher abundance and natural killer cells with relatively low enrichment in the keloid group compared to the control group. UNC5C was correlated with more immune cells compared with other characteristic genes. CONCLUSION: In this study, characteristic genes associated with keloid were identified by bioinformatic approaches and verified in clinical validation samples, providing potential targets for the diagnosis and treatment of keloid.


Subject(s)
Homeodomain Proteins/metabolism , Keloid , Transcription Factors/metabolism , Computational Biology/methods , Gene Expression Regulation , Gene Ontology , Gene Regulatory Networks , Humans , Keloid/drug therapy , Keloid/genetics , Keloid/pathology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/therapeutic use , Netrin Receptors/genetics , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics
2.
Cancer Sci ; 113(4): 1220-1234, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35189004

ABSTRACT

Owing to recent advances in immunotherapies, the overall survival of patients with skin cutaneous melanoma (SKCM) has increased; however, the 5-year survival rate of metastatic patients remains poor. Skin cutaneous melanoma-upregulated genes were screened via analysis of differentially expressed genes (GSE3189 and GSE46517), and metastasis-related oncogenes were identified via weighted gene coexpression network analysis of the GSE46517 dataset. As confirmed by the Tumor Immune Estimation Resource, we found highly expressed centromere protein F (CENPF) in SKCM and its metastases. Immunostaining of human melanoma tissues demonstrated high CENPF expression. According to the Kaplan-Meier survival curve log-rank test, receiver-operating characteristic curve, and univariate and multivariate analyses, the Cancer Genome Atlas (TCGA) database suggested CENPF be a typical independent predictor of SKCM. The CIBERSORT algorithm classified the types of the immune cells from GSE46517 and showed higher proportion of CD4+ memory-activated T cells in metastatic melanoma. Single-sample gene set enrichment analysis of TCGA data confirmed the correlation between CENPF and activated CD4+ T cells. Centromere protein F was positively correlated with tumor mutational burden and CD4+ memory T cell markers (interleukin [IL]-23A, CD28, and CD62L), negatively associated with memory T cell maintenance factors (IL-7 and IL-15) by correlation analysis. Moreover, immunofluorescence showed high coexpression of CENPF and IL23A, CD4 in melanoma. Upregulated CENPF might lead to premature depletion of CD4+ memory T cells and immunosuppression. Nomogram indicated CENPF clinical predictive value for 1-, 3-, 5-, and 7-year melanoma overall survival. Therefore, CENPF plays a vital role in the progression and metastasis of melanoma and can be an effective therapeutic target.


Subject(s)
Melanoma , Skin Neoplasms , Biomarkers, Tumor/metabolism , CD4-Positive T-Lymphocytes/metabolism , Chromosomal Proteins, Non-Histone , Gene Expression Regulation, Neoplastic , Humans , Melanoma/pathology , Memory T Cells , Microfilament Proteins , Prognosis , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
3.
Cancer Cell Int ; 21(1): 694, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930258

ABSTRACT

BACKGROUND: Skin cutaneous melanoma (SKCM) is the most common skin tumor with high mortality. The unfavorable outcome of SKCM urges the discovery of prognostic biomarkers for accurate therapy. The present study aimed to explore novel prognosis-related signatures of SKCM and determine the significance of immune cell infiltration in this pathology. METHODS: Four gene expression profiles (GSE130244, GSE3189, GSE7553 and GSE46517) of SKCM and normal skin samples were retrieved from the GEO database. Differentially expressed genes (DEGs) were then screened, and the feature genes were identified by the LASSO regression and Boruta algorithm. Survival analysis was performed to filter the potential prognostic signature, and GEPIA was used for preliminary validation. The area under the receiver operating characteristic curve (AUC) was obtained to evaluate discriminatory ability. The Gene Set Variation Analysis (GSVA) was performed, and the composition of the immune cell infiltration in SKCM was estimated using CIBERSORT. At last, paraffin-embedded specimens of primary SKCM and normal skin tissues were collected, and the signature was validated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). RESULTS: Totally 823 DEGs and 16 feature genes were screened. IFI16 was identified as the signature associated with overall survival of SKCM with a great discriminatory ability (AUC > 0.9 for all datasets). GSVA noticed that IFI16 might be involved in apoptosis and ultraviolet response in SKCM, and immune cell infiltration of IFI16 was evaluated. At last, FISH and IHC both validated the differential expression of IFI16 in SKCM. CONCLUSIONS: In conclusion, our comprehensive analysis identified IFI16 as a signature associated with overall survival and immune infiltration of SKCM, which may play a critical role in the occurrence and development of SKCM.

4.
Dev Biol ; 445(2): 271-279, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30476483

ABSTRACT

Local transplantation of stem cells has therapeutic effects on skin damage but cannot provide satisfactory wound healing. Studies on the mechanisms underlying the therapeutic effects of stem cells on skin wound healing will be needed. Hence, in the present study, we explored the role of Caveolin-1 in epidermal stem cells (EpiSCs) in the modulation of wound healing. We first isolated EpiSCs from mouse skin tissues and established stable EpiSCs with overexpression of Caveolin-1 using a lentiviral construct. We then evaluated the epidermal growth factor (EGF)-induced cell proliferation ability using cell counting Kit-8 (CCK-8) assay and assessed EpiSC pluripotency by examining Nanog mRNA levels in EpiSCs. Furthermore, we treated mice with skin burn injury using EpiSCs with overexpression of Caveolin-1. Histological examinations were conducted to evaluate re-epithelialization, wound scores, cell proliferation and capillary density in wounds. We found that overexpression of Caveolin-1 in EpiSCs promoted EGF-induced cell proliferation ability and increased wound closure in a mouse model of skin burn injury. Histological evaluation demonstrated that overexpression of Caveolin-1 in EpiSCs promoted re-epithelialization in wounds, enhanced cellularity, and increased vasculature, as well as increased wound scores. Taken together, our results suggested that Caveolin-1 expression in the EpiSCs play a critical role in the regulation of EpiSC proliferation ability and alteration of EpiSC proliferation ability may be an effective approach in promoting EpiSC-based therapy in skin wound healing.


Subject(s)
Caveolin 1/physiology , Wound Healing/physiology , Animals , Burns/genetics , Burns/pathology , Burns/physiopathology , Caveolin 1/antagonists & inhibitors , Caveolin 1/genetics , Cell Proliferation/genetics , Cell Proliferation/physiology , Epidermal Cells/pathology , Epidermal Cells/physiology , Female , Gene Expression , Gene Knockdown Techniques , Male , Mice , Mice, Inbred BALB C , Neovascularization, Physiologic/genetics , Rats , Re-Epithelialization/genetics , Re-Epithelialization/physiology , Stem Cells/pathology , Stem Cells/physiology , Up-Regulation , Wound Healing/genetics
5.
Lab Invest ; 100(5): 751-761, 2020 05.
Article in English | MEDLINE | ID: mdl-31925326

ABSTRACT

The skin plays a critical role in maintenance of water homeostasis. Dysfunction of the skin barrier causes not only delayed wound healing and hypertrophic scarring, but it also contributes to the development of various skin diseases. Dermatitis is a chronic inflammatory skin disorder that has several different subtypes. Skin of contact dermatitis and atopic dermatitis (AD) show epidermal barrier dysfunction. Nax is a sodium channel that regulates inflammatory gene expression in response to perturbation of barrier function of the skin. We found that in vivo knockdown of Nax using RNAi reduced hyperkeratosis and keratinocyte hyperproliferation in rabbit ear dermatitic skin. Increased infiltration of inflammatory cells (mast cells, eosinophils, T cells, and macrophages), a characteristic of dermatitis, was reduced by Nax knockdown. Upregulation of PAR-2 and thymic stromal lymphopoietin (TSLP), which induce Th2-mediated allergic responses, was inhibited by Nax knockdown. In addition, expression of COX-2, IL-1ß, IL-8, and S100A9, which are downstream genes of Nax and are involved in dermatitis pathogenesis, were also decreased by Nax knockdown. Our data show that knockdown of Nax relieved dermatitis symptoms in vivo and indicate that Nax is a novel therapeutic target for dermatitis, which currently has limited therapeutic options.


Subject(s)
Dermatitis, Atopic , Skin , Voltage-Gated Sodium Channels , Animals , Cell Proliferation/genetics , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Dermatitis, Atopic/physiopathology , Down-Regulation/genetics , Eosinophils/metabolism , Female , Gene Knockdown Techniques , Inflammation/genetics , Inflammation/pathology , Inflammation/physiopathology , Keratinocytes/metabolism , Keratosis/genetics , Keratosis/pathology , Keratosis/physiopathology , Mast Cells/metabolism , Rabbits , Skin/cytology , Skin/pathology , Skin/physiopathology , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism
6.
BMC Cancer ; 20(1): 927, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32993558

ABSTRACT

BACKGROUND: Human skin cutaneous melanoma is the most common and dangerous skin tumour, but its pathogenesis is still unclear. Although some progress has been made in genetic research, no molecular indicators related to the treatment and prognosis of melanoma have been found. In various diseases, dysregulation of lncRNA is common, but its role has not been fully elucidated. In recent years, the birth of the "competitive endogenous RNA" theory has promoted our understanding of lncRNAs. METHODS: To identify the key lncRNAs in melanoma, we reconstructed a global triple network based on the "competitive endogenous RNA" theory. Gene Ontology and KEGG pathway analysis were performed using DAVID (Database for Annotation, Visualization, and Integration Discovery). Our findings were validated through qRT-PCR assays. Moreover, to determine whether the identified hub gene signature is capable of predicting the survival of cutaneous melanoma patients, a multivariate Cox regression model was performed. RESULTS: According to the "competitive endogenous RNA" theory, 898 differentially expressed mRNAs, 53 differentially expressed lncRNAs and 16 differentially expressed miRNAs were selected to reconstruct the competitive endogenous RNA network. MALAT1, LINC00943, and LINC00261 were selected as hub genes and are responsible for the tumorigenesis and prognosis of cutaneous melanoma. CONCLUSIONS: MALAT1, LINC00943, and LINC00261 may be closely related to tumorigenesis in cutaneous melanoma. In addition, MALAT1 and LINC00943 may be independent risk factors for the prognosis of patients with this condition and might become predictive molecules for the long-term treatment of melanoma and potential therapeutic targets.


Subject(s)
Carcinogenesis/genetics , Melanoma/genetics , RNA, Long Noncoding/genetics , Skin Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , Kaplan-Meier Estimate , Male , MicroRNAs/genetics , Prognosis , RNA, Long Noncoding/classification , RNA, Messenger/genetics , Melanoma, Cutaneous Malignant
7.
Int Wound J ; 17(2): 300-309, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31782622

ABSTRACT

In recent years, hydrosurgery is a technology that has been applied more and more in debridement procedures. However, the selectivity of hydrosurgery to cutaneous necrotic tissues has not been proved. This study was designed to investigate the possible tissue selectivity of hydrosurgery in the debridement in burn wounds. Deep partial-thickness burns were produced on the back of porcine, and 48 hours later, both burn wounds and normal skin were debrided using the hydrosurgery system. Then tissue samples were taken, and histological staining was performed and observed under microscope. Burn wound resection rates and the normal skin damaged rates were measured. Our result indicated that the burn wounds were significantly more sensitive than the normal skin when the water pressure produced by the hydrosurgery system was set between 3000 and 5000 psi (pounds per square inch), that is, the necrotic tissue portions were debrided more easily than the normal skin tissue. Based on these data, we suggest that 3000 to 5000 psi of water pressure in the hydrosurgery system has a skin tissue selectivity in burn wounds.


Subject(s)
Burns/surgery , Debridement/instrumentation , Hydrotherapy/instrumentation , Therapeutic Irrigation/instrumentation , Wound Healing , Animals , Disease Models, Animal , Equipment Design , Follow-Up Studies , Prospective Studies , Skin Transplantation/methods , Swine , Treatment Outcome
8.
Exp Dermatol ; 28(5): 576-584, 2019 05.
Article in English | MEDLINE | ID: mdl-30903711

ABSTRACT

Nax is an atypical sodium channel that mediates inflammatory pathways in pathological conditions of the skin. In this study, we developed a skin inflammation model in the rabbit ear through application of imiquimod (IMQ). Knockdown of Nax using RNAi attenuated IMQ-induced skin inflammation, including skin erythema, scaling and papule formation. Histologic analysis showed that thickening and insufficient differentiation of the epidermis found in psoriasis-like skin were normalized by administration of Nax -RNAi. Excessive infiltration of inflammatory cells found in inflammatory lesions, such as mast cells, eosinophils, neutrophils, T cells and macrophages, was reduced by Nax -RNAi. Expression of S100A9, which is a downstream gene of Nax and a mediator of inflammation, was decreased by Nax -RNAi. Our results demonstrated that knockdown of Nax ameliorated IMQ-induced psoriasis-like skin inflammation in vivo. Thus, targeting of Nax may represent a potential therapeutic option for the treatment of psoriasis.


Subject(s)
Dermatitis/drug therapy , Imiquimod/pharmacology , Psoriasis/drug therapy , Skin/drug effects , Voltage-Gated Sodium Channels/genetics , Animals , Epidermis/drug effects , Female , Gene Knockdown Techniques , Inflammation/chemically induced , Psoriasis/chemically induced , RNA Interference , Rabbits , Skin/pathology
9.
Phytother Res ; 33(2): 422-430, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30461085

ABSTRACT

We aimed to explore the effect of curcumin on epidermal stem cells (ESCs) in regulating wound healing and the underlying molecular mechanism. We treated mouse ESCs isolated from skin tissues with curcumin, and then assessed the proliferation ability of cells induced by epidermal growth factor using cell counting kit-8 assay. The pluripotency of ESCs was evaluated as well through examination of Nanog expression in ESCs. Further, mice with skin burns were treated with ESCs with or without curcumin pretreatments. Histological evaluations were then preformed to determine wound scores, cell proliferation, reepithelialization, and capillary density in wounds. Curcumin treatment promoted the proliferative ability of ESCs and conditioned medium from curcumin-treated ESCs enhanced human umbilical vein endothelial cell (HUVEC) tube formation. We also found curcumin treatment elevated caveolin-1 expression in ESCs, which was required for the beneficial effect of curcumin on ESC proliferation and HUVEC tube formation. Next, using a mouse model of burn wound healing, curcumin-treated ESCs exhibited enhanced wound closure, which also required caveolin-1 expression. Our current study demonstrates the beneficial effect of curcumin on burn wound healing in mice, which is mediated by upregulating caveolin-1 in ESCs, and supports the potential therapeutic role of curcumin in ESC-based treatment against skin wound healing.


Subject(s)
Burns/drug therapy , Caveolin 1/genetics , Curcumin/pharmacology , Wound Healing/drug effects , Animals , Cell Proliferation/drug effects , Epidermal Cells/drug effects , Epidermis/drug effects , Female , Humans , Male , Mice , Mice, Inbred BALB C , Skin/pathology , Stem Cells/drug effects , Up-Regulation
10.
Cell Physiol Biochem ; 49(6): 2333-2347, 2018.
Article in English | MEDLINE | ID: mdl-30261495

ABSTRACT

BACKGROUND/AIMS: Little is known how miR-203 is involved in epidermal stem cells (ESCs) differentiation and scar formation. METHODS: We first used luciferase assay to determine the interaction of miR-203 with the 3'-UTR in regulation of Hes1 expression. We then used flow cytometry to analyze the effects of miR-203 expression on the differentiation of ESCs to MFB by determination of CK15 ratio and α-SMA. To confirm the results of flow cytometry analysis, we used Western blot to examine the expression of α-SMA, Collagen I (Col I), and Collagen III (Col III), as well as the expression of Notch1, Jagged1, and Hes1 in ESCs after the treatment of pre-miR-203 or anti-miR-203. Finally, we examined the effects local anti-miR-203 treatment on would closure and scar formation using a mouse skin wound model. RESULTS: Pre-miR-203 treatment increased ESCs differentiation to MFB cells, as indicated by decreased CK15 ratio and increased MFB biomarkers. This phenomenon was reversed by overexpression of Hes1 in ESCs. In addition, skin incision increased expression of miR-203 in wound tissue. Local treatment of anti-miR-203 could accelerate wound closure and reduce scar formation in vivo, which was associated with increased re-epithelialization, skin attachment regeneration, and collagen reassignment. Finally, we confirmed that anti-miR-203 treatment could inhibit ESCs differentiation in vivo via increasing Hesl expression. CONCLUSION: Taken together, our results suggested that overexpression of miR-203 in ESCs after skin wound may be a critical mechanism underlying the scar formation.


Subject(s)
Cicatrix/prevention & control , MicroRNAs/metabolism , Transcription Factor HES-1/metabolism , Wound Healing , 3' Untranslated Regions , Actins/metabolism , Animals , Antagomirs/metabolism , Cell Differentiation , Cicatrix/pathology , Epidermal Cells , Female , Hyperplasia/pathology , Keratin-15/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Myofibroblasts/cytology , Myofibroblasts/metabolism , Skin/pathology , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factor HES-1/antagonists & inhibitors , Transcription Factor HES-1/genetics
11.
Exp Dermatol ; 25(8): 604-10, 2016 08.
Article in English | MEDLINE | ID: mdl-26997546

ABSTRACT

Hypertrophic scarring is a common dermal fibroproliferative disorder characterized by excessive collagen deposition. Prostaglandin E2 (PGE2 ), an important inflammatory product synthesized via the arachidonic acid cascade, has been shown to act as a fibroblast modulator and to possess antifibroblastic activity. However, the mechanism underlying the antifibrotic effect of PGE2 remains unclear. In this study, we explored the effects of PGE2 on TGF-ß1-treated dermal fibroblasts in terms of collagen production and to determine the regulatory pathways involved, as well as understand the antiscarring function of PGE2 in vivo. We found that PGE2 inhibited TGF-ß1-induced collagen synthesis by regulating the balance of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP). It did so by upregulating cAMP through the E prostanoid (EP)2 receptor. We determined that inhibition of the TGF-ß1/Smad pathway by PGE2 is associated with its ability to inhibit collagen synthesis. An in vivo study further confirmed that PGE2 inhibits hypertrophic scar formation by decreasing collagen production. Our results demonstrate that the novel anti-scarring function of PGE2 is achieved by balancing MMPs/TIMP expression and decreasing collagen production.


Subject(s)
Cicatrix/prevention & control , Collagen/biosynthesis , Dinoprostone/therapeutic use , Fibroblasts/metabolism , Animals , Azetidines , Colforsin , Cyclic AMP/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Dinoprostone/pharmacology , Drug Evaluation, Preclinical , Female , Fibroblasts/drug effects , Humans , Isoindoles , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Rabbits , Signal Transduction/drug effects , Smad Proteins/metabolism , Sulfonamides , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transforming Growth Factor beta1
12.
Mol Cell Biochem ; 423(1-2): 1-8, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27766530

ABSTRACT

Epidermal growth factor (EGF)-like family members mediate a wide range of biological activities including cell proliferation and migration. Increasing evidence indicated that EGF plays an important role in the process of wound healing by stimulating fibroblast motility. The aim of this study was to see whether EGF-like domain 7 (EGFL7)-overexpressing epidermal stem cells (EGFL7-ESCs) would promote fibroblast proliferation and migration. We found that mRNA and protein levels of EGFL7 expression were significantly increased in EGFL7-ESCs. The protein expression of EGFL7 was significantly elevated in conditioned media (CM) of EGFL7-ESCs compared to ESCs CM or vector-ESCs CM. The cell count and cell viability of EGFL7-ESCs CM-treated fibroblasts were also significantly increased compared to control. In addition, EGFL7-ESCs CM-treated fibroblasts showed elevated migration compared with control. Moreover, the expressions of ß1-integrin, ß-tubulin, ß-actin, and Vimentin were increased, while that of E-cadherin was decreased in EGFL7-ESCs CM-treated fibroblasts. These results indicate that EGFL7-ESCs contribute towards promoting fibroblast migration through enhancing cell adhesion, strengthening cytoskeleton, and reducing intercellular aggregation. These findings suggest that the stimulating effect of EGFL7-ESCs on fibroblast proliferation and migration may provide a useful strategy for wound healing.


Subject(s)
Cell Movement/physiology , Cell Proliferation/physiology , Cytoskeleton/metabolism , Endothelial Growth Factors/biosynthesis , Epidermis/metabolism , Fibroblasts/metabolism , Stem Cells/metabolism , Cadherins/metabolism , Calcium-Binding Proteins , Cell Adhesion/physiology , Cell Line , EGF Family of Proteins , Epidermal Cells , Fibroblasts/cytology , Humans , Stem Cells/cytology , Wound Healing/physiology
13.
J Opt Soc Am A Opt Image Sci Vis ; 33(4): 630-6, 2016 04 01.
Article in English | MEDLINE | ID: mdl-27140773

ABSTRACT

In this study, we developed a signal processing method for fixed pattern noise removal in fiber-bundle-based endoscopic imaging. We physically acquired the fixed pattern of the fiber bundle and used it as a prior image in an l1 norm minimization (l1-min) algorithm. We chose an iterative shrinkage thresholding algorithm for l1 norm minimization. In addition to fixed pattern noise removal, this method also improved image contrast while preserving spatial resolution. The effectiveness of this method was demonstrated on images obtained from a dark-field illuminated reflectance fiber-optic microscope (DRFM). The iterative l1-min algorithm presented in this paper, in combination with the DRFM system that we previously developed, enables high-resolution, high-sensitivity, intrinsic-contrast, and in situ cellular imaging which has great potential in clinical diagnosis and biomedical research.


Subject(s)
Algorithms , Endoscopy/instrumentation , Image Processing, Computer-Assisted/methods , Optical Fibers , Signal-To-Noise Ratio , Humans , Mesenchymal Stem Cells/cytology
14.
J Cell Physiol ; 230(8): 1895-905, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25546411

ABSTRACT

Endothelial dysfunction is a major characteristic of diabetic vasculopathy. Protection of the vascular endothelium is an essential aspect of preventing and treating diabetic vascular complications. Although Angiopoietin-1 (Ang-1) is an important endothelial-specific protective factor, whether Ang-1 protects vascular cells undergoing advanced glycation end product (AGE) injury has not been investigated. The aim of the present study was to determine the potential effects of Ang-1 on endothelial cells after exposure to AGE. We show here that Ang-1 prevented AGE-induced vascular leakage by enhancing the adherens junctions between endothelial cells, and this process was mediated by the phosphorylation and membrane localization of VE-cadherin. Furthermore, Ang-1 also protected endothelial cells from AGE-induced death by regulating phosphatidylinositol 3-kinase (PI3K)/Akt-dependent Bad phosphorylation. Our findings suggest that the novel protective mechanisms of Ang-1 on endothelium are achieved by strengthening endothelial cell junctions and reducing endothelial cell death after AGE injury.


Subject(s)
Angiopoietin-1/metabolism , Apoptosis/physiology , Endothelial Cells/pathology , Glycation End Products, Advanced/toxicity , Intercellular Junctions/metabolism , Angiopoietin-1/pharmacology , Apoptosis/drug effects , Blotting, Western , Capillary Permeability/drug effects , Capillary Permeability/physiology , Cell Line , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Immunoprecipitation , In Situ Nick-End Labeling , Intercellular Junctions/drug effects
15.
Burns Trauma ; 12: tkad048, 2024.
Article in English | MEDLINE | ID: mdl-38179473

ABSTRACT

Background: Hypertrophic scar (HS) is a common fibroproliferative skin disease that currently has no truly effective therapy. Given the importance of phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in hypertrophic scar formation, the development of therapeutic strategies for endogenous inhibitors against PIK3CA is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of miR-203a-3p (PIK3CA inhibitor) against excessive scar. Methods: Bioinformatic analysis, immunohistochemistry, immunofluorescence, miRNA screening and fluorescence in situ hybridization assays were used to identify the possible pathways and target molecules mediating HS formation. A series of in vitro and in vivo experiments were used to clarify the role of PIK3CA and miR-203a-3p in HS. Mechanistically, transcriptomic sequencing, immunoblotting, dual-luciferase assay and rescue experiments were executed. Results: Herein, we found that PIK3CA and the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway were upregulated in scar tissues and positively correlated with fibrosis. We then identified miR-203a-3p as the most suitable endogenous inhibitor of PIK3CA. miR-203a-3p suppressed the proliferation, migration, collagen synthesis and contractility as well as the transdifferentiation of fibroblasts into myofibroblasts in vitro, and improved the morphology and histology of scars in vivo. Mechanistically, miR-203a-3p attenuated fibrosis by inactivating the PI3K/AKT/mTOR pathway by directly targeting PIK3CA. Conclusions: PIK3CA and the PI3K/AKT/mTOR pathway are actively involved in scar fibrosis and miR-203a-3p might serve as a potential strategy for hypertrophic scar therapy through targeting PIK3CA and inactivating the PI3K/AKT/mTOR pathway.

16.
Food Chem ; 454: 139757, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38805924

ABSTRACT

Vibrio vulnificus infection caused by contaminated aquatic products and seawater can lead to severe disease and high mortality. The development of a rapid and sensitive detection method for Vibrio vulnificus is vital to effectively prevent infection in advance. In this study, CeO2@PtRu with high peroxidase activity was used to construct a colorimetric immunoassay for Vibrio vulnificus detection by conjugating polyclonal antibodies via the biotin-streptavidin system. The developed colorimetric biosensor for Vibrio vulnificus demonstrated rapid operability and good sensitivity with a detection range from 104 CFU/mL to 109 CFU/mL, and the limit of detection (LOD) is 193 CFU/mL. Moreover, the colorimetric biosensor showed excellent specificity and good recoveries from 98.70% to 102.10% with RSD < 7.45% for spiked real samples. This novel CeO2@PtRu-based colorimetric biosensor has great application potential for the sensitive detection of Vibrio vulnificus in seafood.


Subject(s)
Biosensing Techniques , Cerium , Colorimetry , Seafood , Vibrio vulnificus , Vibrio vulnificus/isolation & purification , Biosensing Techniques/instrumentation , Seafood/microbiology , Seafood/analysis , Cerium/chemistry , Peroxidase/metabolism , Peroxidase/chemistry , Limit of Detection , Food Contamination/analysis , Animals
17.
Int J Biol Sci ; 20(5): 1729-1743, 2024.
Article in English | MEDLINE | ID: mdl-38481816

ABSTRACT

Background: N6-methyladenosine (m6A) is the most common and abundant mRNA modification, playing an essential role in biological processes and tumor development. However, the role of m6A methylation in skin cutaneous melanoma (SKCM) is not yet clear. This study analyzed the expression of m6A-related functional genes in SKCM and aimed to explore the key demethylase ALKBH5 mediated m6A modification and its potential mechanism in human SKCM. Methods: Based on public databases, the m6A-related gene expression landscape in SKCM was portrayed. MeRIP-Seq and RNA-Seq were used to recognize the downstream target of ALKBH5. In vivo and in vitro functional phenotype and rescue functional experiments were performed to explore the mechanism of the ALKBH5-m6A-ABCA1 axis in SKCM. Results: We found ALKBH5 upregulated in SKCM, associated with poor prognosis. ALKBH5 can promote melanoma cell proliferation, colony formation, migration, and invasion and inhibit autophagy in vitro, facilitating tumor growth and metastasis in vivo. We identified ABCA1, a membrane protein that assists cholesterol efflux, as a downstream target of ALKBH5-mediated m6A demethylation. Finally, our data demonstrated that ALKBH5 promoted SKCM via mediating ABCA1 downregulation by reducing ABCA1 mRNA stability in an m6A-dependent manner. Conclusion: Our findings exhibited the functional value of the key demethylase ALKBH5 mediated m6A modification in the progression of SKCM, suggesting the ALKBH5-m6A-ABCA1 axis as a potential therapeutic target in SKCM.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Skin , Autophagy/genetics , Demethylation , AlkB Homolog 5, RNA Demethylase/genetics , ATP Binding Cassette Transporter 1
18.
Wound Repair Regen ; 21(2): 275-81, 2013.
Article in English | MEDLINE | ID: mdl-23437931

ABSTRACT

Dermal papilla cells (DPCs) show phenotypic plasticity during wound healing. The multipotency of DPCs is well recognized, but the signaling pathways that regulate the differentiation of these cells into fibroblasts are poorly understood. A preliminary experiment showed that transforming growth factor beta1 (TGF-ß1) can induce DPCs to differentiate into fibroblast-like cells, which suggests that DPCs may be a source of wound-healing fibroblasts. Bone morphogenetic protein-7 (BMP-7), a member of the TGF-ß superfamily, can prevent and reverse fibrosis by counteracting the TGF-ß1-mediated profibrotic effect. To determine whether BMP-7 attenuates the TGF-ß1-induced differentiation of DPCs into fibroblasts, we established an in vitro system for DPC differentiation and recorded the gene expression patterns that distinguished DPCs from fibroblasts. The proportion of fibroblast-like cells was significantly enhanced in DPCs treated with TGF-ß1, as evidenced by immunocytochemistry, flow cytometry, quantitative real-time reverse transcriptase polymerase chain reaction, and Western blot analysis. BMP-7 and TGF-ß1 administration substantially decreased fibroblast-like differentiation, indicating inhibition of TGF-ß1-induced differentiation. The antagonistic BMP-7- and TGF-ß1-activated signaling pathways can be used to promote wound healing or suppress hypertrophic scarring.


Subject(s)
Bone Morphogenetic Protein 7/metabolism , Cicatrix, Hypertrophic/physiopathology , Fibroblasts/metabolism , Hair Follicle/metabolism , Transforming Growth Factor beta/antagonists & inhibitors , Wound Healing , Actins/antagonists & inhibitors , Animals , Blotting, Western , Bone Morphogenetic Protein 7/pharmacology , Calcium-Binding Proteins/antagonists & inhibitors , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/prevention & control , Female , Flow Cytometry , Hair Follicle/cytology , Immunohistochemistry , Male , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Transforming Growth Factor beta/pharmacology , Vimentin/antagonists & inhibitors
19.
J Cosmet Dermatol ; 22(6): 1893-1905, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36701151

ABSTRACT

BACKGROUND: Keloid is a pathological dermatological condition that manifests as an overgrowth scar secondary to skin trauma. This study endeavored to excavate immune-related signatures of keloid based on single-cell RNA (scRNA) sequencing data and bulk RNA sequencing data. METHOD: The keloid-relevant scRNA sequencing dataset GSE163973 and bulk RNA sequencing dataset GSE113619 were mined from the GEO database. The "Seurat" R package was utilized for data quality control, cell clustering, and investigation of marker genes of each cell cluster. The "SingleR" package helped match the marker genes of the corresponding cluster to specific cell types. Moreover, the R package "Monocle" was deployed for pseudotemporal ordering analysis, and the "clusterProfiler" was applied for functional and pathway enrichment analysis. The immune-related signatures were then identified, and potential targeted drugs were predicted via the DGIdb database. Verification of the immune-related signatures in clinical validation samples was implemented by RT-qPCR. RESULTS: Totally 23 cell clusters were screened and classified into 10 cell types based on the scRNA sequencing data. The keloid group had a significantly higher endothelial cell proportion than the control group. As enrichment analysis was applied in both differentially expressed genes (DEGs) of scRNA and bulk RNA sequencing data, we found they were enriched in multiple common immune-related pathways and biological processes. Meanwhile, we acquired three immune-related signatures (VCAM1, CALCRL, and HLA-DPB1) by intersecting the above DEGs with immune-related genes (IRGs). Then, we predicted 16 drugs potentially targeting the biomarkers through the DGIdb database. Finally, the outcome of RT-qPCR of clinical validation samples further verified the results. CONCLUSION: In conclusion, we analyzed the cell types and functional differences in the keloid through scRNA and bulk RNA sequencing data. We identified three immune-related signatures (VCAM1, CALCRL, and HLA-DPB1) in keloid, providing a basis for further in-depth investigation of the molecular mechanisms of keloid and exploration of therapeutic targets.


Subject(s)
Keloid , Humans , Keloid/genetics , Transcriptome , Gene Expression Profiling , Drug Delivery Systems , Endothelial Cells
20.
Biomedicines ; 11(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38137441

ABSTRACT

Keloids are common benign cutaneous pathological fibrous proliferation diseases, which are difficult to cure and easily recur. Studies have shown that fibroblast growth factor receptor-1 (FGFR1) was enhanced in pathological fibrous proliferation diseases, such as cirrhosis and idiopathic pulmonary fibrosis (IPF), suggesting the FGFR1 pathway has potential for keloid treatment. Derazantinib is a selective FGFR inhibitor with antiproliferative activity in in vitro and in vivo models. The present study determined the effects of derazantinib on human keloid fibroblasts (KFs). Cell viability assay, migration assay, invasion assay, immunofluorescence staining, quantitative polymerase chain reaction, Western blot analysis, HE staining, Masson staining, and immunohistochemical analysis were used to analyze the KFs and keloid xenografts. In this study, we found that derazantinib inhibited the proliferation, migration, invasion, and collagen production of KFs in vitro. The transcription and expression of plasminogen activator inhibitor-1 (PAI-1), which is closely related to collagen deposition and tissue fibrosis, was significantly inhibited. Also, derazantinib inhibited the expression of FGFR1 and PAI-1 and reduced the weight of the implanted keloid from the xenograft mice model. These findings suggest that derazantinib may be a potent therapy for keloids via FGFR signaling.

SELECTION OF CITATIONS
SEARCH DETAIL