Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Psychol Med ; : 1-11, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523252

ABSTRACT

BACKGROUND: Although dopaminergic disturbances are well-known in schizophrenia, the understanding of dopamine-related brain dynamics remains limited. This study investigates the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES). METHODS: Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs). Frame-wise clustering was implemented to generate CAPs related to SN activation or deactivation. Connectome features of each CAP were derived using an edge-centric method. The occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and compared between two groups, and correlations between temporal dynamic metrics and symptom burdens were explored. RESULTS: Functional reconfigurations in CAPs exhibited significant differences between the activation and deactivation states of SN. During SN activation, FES more frequently recruited a CAP characterized by activated default network, language network, control network, and the caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES exhibited increased recruitment of a CAP with activated visual and dorsal attention networks but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034). CONCLUSION: Our results suggest that neuroregulatory dysfunction in dopaminergic pathways involving SN potentially mediates aberrant time-varying functional reorganizations in schizophrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective of brain dynamics.

2.
Mol Psychiatry ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443193

ABSTRACT

Across the major psychiatric disorders (MPDs), a shared disruption in brain physiology is suspected. Here we investigate the neural variability at rest, a well-established behavior-relevant marker of brain function, and probe its basis in gene expression and neurotransmitter receptor profiles across the MPDs. We recruited 219 healthy controls and 279 patients with schizophrenia, major depressive disorder, or bipolar disorders (manic or depressive state). The standard deviation of blood oxygenation level-dependent signal (SDBOLD) obtained from resting-state fMRI was used to characterize neural variability. Transdiagnostic disruptions in SDBOLD patterns and their relationships with clinical symptoms and cognitive functions were tested by partial least-squares correlation. Moving beyond the clinical sample, spatial correlations between the observed patterns of SDBOLD disruption and postmortem gene expressions, Neurosynth meta-analytic cognitive functions, and neurotransmitter receptor profiles were estimated. Two transdiagnostic patterns of disrupted SDBOLD were discovered. Pattern 1 is exhibited in all diagnostic groups and is most pronounced in schizophrenia, characterized by higher SDBOLD in the language/auditory networks but lower SDBOLD in the default mode/sensorimotor networks. In comparison, pattern 2 is only exhibited in unipolar and bipolar depression, characterized by higher SDBOLD in the default mode/salience networks but lower SDBOLD in the sensorimotor network. The expression of pattern 1 related to the severity of clinical symptoms and cognitive deficits across MPDs. The two disrupted patterns had distinct spatial correlations with gene expressions (e.g., neuronal projections/cellular processes), meta-analytic cognitive functions (e.g., language/memory), and neurotransmitter receptor expression profiles (e.g., D2/serotonin/opioid receptors). In conclusion, neural variability is a potential transdiagnostic biomarker of MPDs with a substantial amount of its spatial distribution explained by gene expressions and neurotransmitter receptor profiles. The pathophysiology of MPDs can be traced through the measures of neural variability at rest, with varying clinical-cognitive profiles arising from differential spatial patterns of aberrant variability.

3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 268-274, 2023 Mar.
Article in Zh | MEDLINE | ID: mdl-36949684

ABSTRACT

Objective: To investigate hippocampal development deviation and its association with cognition in patients with major psychiatric disorders (MPDs), including schizophrenia, bipolar disorder and major depressive disorder. Methods: The T1-weighted MRI data of 174 first-episode drug-naïve schizophrenia (FES) atients, 169 bipolar disorder (BD) patients, 184 major depressive disorder (MDD) patients, and 321 healthy controls were collected and their hippocampal volume was extracted after preprocessing with Freesurfer 5.3. A normative neurodevelopment model was applied to calculate the hippocampal deviation scores. Data on cognitive functions, including visual memory, attention, spatial working memory, were collected. Comparison by different sexes was made to identify difference between the hippocampal development deviation scores of the control group and those of the disease groups. We also investigated the moderating effect of age on the deviation score and explored the association between the deviation score and cognitive function. Results: The hippocampal development deviation scores of patients with MPDs were significantly lower than those of the healthy controls (false discovery rate [FDR]-P<0.05). Analysis of the moderating effect of age revealed lower deviation scores in young patients (<[25.83-28.56] yr.) and higher deviation scores in old patients (>[35.87-54.35] yr.) in comparison with those of the healthy controls. The right hippocampal deviation scores in male FES patients were positively correlated with the number of errors for tasks concerning spatial working memory ( r=0.32, FDR-P=0.04). Conclusion: Our findings suggest abnormal hippocampal development in MPDs patients and its different distribution in MPDs patients of different age groups. The hippocampal development deviation score may provide a new perspective for further understanding of etiology in MPDs.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Humans , Male , Depressive Disorder, Major/complications , Bipolar Disorder/complications , Hippocampus , Schizophrenia/complications , Cognition , Magnetic Resonance Imaging
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 281-286, 2023 Mar.
Article in Zh | MEDLINE | ID: mdl-36949686

ABSTRACT

Objective: To investigate frequency-specific alterations of spontaneous brain activity in first-episode drug-naïve schizophrenia (SZ) patients and the associations with clinical symptoms. Methods: We collected the resting-state functional MRI (rs-fMRI) data from 84 first-episode drug-naïve SZ patients and 94 healthy controls (HCs) and calculated the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of four frequency bands, including slow-2, slow-3, slow-4, and slow-5. Two-sample t-tests were used to evaluate the intergroup differences in ALFF and ReHo, while partial correlation analyses were conducted to explore the associations between abnormal ALFF and ReHo and the severity of clinical symptoms in the SZ group. Results: Compared with HCs, the SZ group showed reduced ALFF in superior cerebellum and cerebellar vermis across slow-2, slow-3, and slow-4 bands, while increased ALFF was found in left superior temporal gyrus, middle temporal gyrus, and superior temporal pole at slow-4 band. Moreover, reduced ReHo was observed in the right precentral and postcentral gyri at slow-3 band in the SZ group. Additionally, the ALFF of left superior temporal gyrus, middle temporal gyrus, and superior temporal pole in slow-4 band showed a trend of positive correlation with the excited factor score of Positive and Negative Syndrome Scale (PANSS) in the SZ group. Conclusion: Our results suggest that local alterations of spontaneous brain activity were frequency-specific in first-episode drug-naïve SZ patients.


Subject(s)
Schizophrenia , Humans , Brain , Brain Mapping , Temporal Lobe , Magnetic Resonance Imaging
5.
Biotechnol Lett ; 44(9): 1063-1072, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35918621

ABSTRACT

AIM: To investigate the impact of deficiency of LIG4 gene on site-specific integration in CHO cells. RESULTS: CHO cells are considered the most valuable mammalian cells in the manufacture of biological medicines, and genetic engineering of CHO cells can improve product yield and stability. The traditional method of inserting foreign genes by random integration (RI) requires multiple rounds of screening and selection, which may lead to location effects and gene silencing, making it difficult to obtain stable, high-yielding cell lines. Although site-specific integration (SSI) techniques may overcome the challenges with RI, its feasibility is limited by the very low efficiency of the technique. Recently, SSI efficiency has been enhanced in other mammalian cell types by inhibiting DNA ligase IV (Lig4) activity, which is indispensable in DNA double-strand break repair by NHEJ. However, this approach has not been evaluated in CHO cells. In this study, the LIG4 gene was knocked out of CHO cells using CRISPR/Cas9-mediated genome editing. Efficiency of gene targeting in LIG4-/--CHO cell lines was estimated by a green fluorescence protein promoterless reporter system. Notably, the RI efficiency, most likely mediated by NHEJ in CHO, was inhibited by LIG4 knockout, whereas SSI efficiency strongly increased 9.2-fold under the precise control of the promoter in the ROSA26 site in LIG4-/--CHO cells. Moreover, deletion of LIG4 had no obvious side effects on CHO cell proliferation. CONCLUSIONS: Deficiency of LIG4 represents a feasible strategy to improve SSI efficiency and suggests it can be applied to develop and engineer CHO cell lines in the future.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CHO Cells , CRISPR-Cas Systems/genetics , Cricetinae , Cricetulus , DNA End-Joining Repair/genetics , DNA Ligase ATP/genetics
6.
Mol Pharmacol ; 100(3): 193-202, 2021 09.
Article in English | MEDLINE | ID: mdl-34315811

ABSTRACT

Phagocytic resistance plays a key role in tumor-mediated immune escape, so phagocytosis immune checkpoints are a potential target for cancer immunotherapy. CD47 is one of the important phagocytosis immune checkpoints; thus, blocking the interaction between CD47 and signal regulatory protein α (SIRPα) may provide new options for cancer treatment. Using computer-aided targeted epitope mammalian cell-displayed antibody library, we screened and obtained an engineered SIRPα variant fragment crystallizable fusion protein, FD164, with higher CD47-binding activity than wild-type SIRPα Compared with wild-type SIRPα, FD164 has approximately 3-fold higher affinity for binding to CD47, which further enhanced its phagocytic effect in vitro and tumor suppressor activity in vivo. FD164 maintains the similar antitumor activity of the clinical research drug Hu5F9 in the mouse xenograft model. Furthermore, FD164 combined with rituximab can significantly improve the effect of single-agent therapy. On the other hand, compared with Hu5F9, FD164 does not cause hemagglutination, and its ability to bind to red blood cells or white blood cells is weaker at the same concentration. Finally, it was confirmed by computer structure prediction and alanine scanning experiments that the N45, E47, 52TEVYVK58, K60, 115EVTELTRE122, and E124 residues of CD47 are important for SIRPα or FD164 recognition. Briefly, we obtained a high-affinity SIRPα variant FD164 with balanced safety and effectiveness. SIGNIFICANCE STATEMENT: Up to now, few clinically marketed drugs targeting CD47 have been determined to be effective and safe. FD164, a potential signal regulatory protein α variant fragment crystallizable protein with balanced safety and effectiveness, could provide a reference for the development of antitumor drugs.


Subject(s)
Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , CD47 Antigen/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Animals , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, Differentiation/adverse effects , Antigens, Differentiation/chemistry , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/immunology , Burkitt Lymphoma/pathology , CD47 Antigen/chemistry , CHO Cells , Cell Line , Cricetulus , Drug Design , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Hemagglutination/drug effects , Immunotherapy , Mice, SCID , Models, Molecular , Phagocytosis/drug effects , Phagocytosis/immunology , Receptors, Immunologic/chemistry , Recombinant Fusion Proteins/adverse effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Rituximab/therapeutic use , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
7.
Biochem Biophys Res Commun ; 549: 120-127, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33667709

ABSTRACT

Staphylococcal enterotoxin B (SEB), one of the exotoxins produced by Staphylococcus aureus, is the key toxin that causes poisoning reactions and toxic shock syndrome. In the current research work, a novel human antibody named LXY8 was screened from a human phage display antibody library, and LXY8 blocked the interaction between SEB and the T cell receptor (TCR). The binding activity between LXY8 and SEB was 0.525 nM. Furthermore, LXY8 could effectively inhibit the SEB-induced activation of peripheral blood mononuclear cells and release of cytokines. In the BALB/c mouse model, LXY8 effectively neutralized SEB toxicity in vivo. Finally, based on computer-guided molecular modeling, we designed a series of SEB mutation sites; these sites facilitated the determination of the key residues (i.e.176EFNN179) of SEB recognized by LXY8. The research revealed that the 176EFNN179 residues of SEB are important for specific antibody-antigen recognition. The results may be helpful for the development of antibody-based therapy for SEB-induced toxic shock syndrome.


Subject(s)
Antibodies, Bacterial/analysis , Antibodies, Monoclonal/analysis , Antibodies, Neutralizing/analysis , Enterotoxins/immunology , Epitopes/immunology , Animals , CHO Cells , Cell Proliferation , Cell Surface Display Techniques , Cricetulus , Cytokines/metabolism , Enterotoxins/antagonists & inhibitors , Epitope Mapping , Female , Histocompatibility Antigens Class II/metabolism , Humans , Mice, Inbred BALB C , Protein Binding , Receptors, Antigen, T-Cell/metabolism
8.
BMC Biotechnol ; 19(1): 28, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31118070

ABSTRACT

BACKGROUND: In vivo use of monoclonal antibodies has become routine clinical practice in the treatment of human cancer. CD38 is an attractive target, because it has double roles, as a receptor and an ectoenzyme. Daratumumab, an anti-CD38 antibody, is currently in the clinical trials for multiple myeloma. RESULTS: Here we obtained a humanized anti-CD38 antibody, SG003, using SDR-grafting method. SG003 possessed stronger antigen binding activity than Daratumumab, and its epitope was far from that of Daratumumab, an anti-CD38 antibody currently in the clinical trials for multiple myeloma; besides, SG003 showed enhanced antibody-dependent cell-mediated cytotoxicity function and in vivo inhibitory efficacy of tumor growth in xenograft mice model. CONCLUSION: SG003 seemed to be a good option to improve the curative effect of CD38-related cancers.


Subject(s)
ADP-ribosyl Cyclase 1/immunology , Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity/drug effects , Lymphoma/drug therapy , ADP-ribosyl Cyclase 1/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line, Tumor , Epitopes/immunology , Epitopes/metabolism , Humans , Lymphoma/immunology , Lymphoma/metabolism , Mice, SCID , Survival Analysis , Xenograft Model Antitumor Assays/methods
9.
Scand J Immunol ; 90(2): e12777, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31075180

ABSTRACT

TAM family members (TYRO3, AXL and MERTK) play essential roles in the resolution of inflammation and in infectious diseases and cancer. AXL, a tyrosine kinase receptor, is commonly overexpressed in several solid tumours and numerous hematopoietic malignancies including acute myeloid leukaemia, acute lymphocytic leukaemia, chronic myeloid leukaemia, chronic lymphocytic leukaemia and multiple myeloma. AXL significantly promotes tumour cell migration, invasion and metastasis, as well as angiogenesis. AXL also plays an important role in inflammation and macrophage ontogeny. Recent studies have revealed that AXL contributes to leukaemic phenotypes through activation of oncogenic signalling pathways that lead to increased cell migration and proliferation. To evaluate the mechanisms underlying the role of AXL signalling in tumour metastasis, we screened a phage display library to generate a novel human monoclonal antibody, named DAXL-88, that recognizes both human and murine AXL. The concentrations of DAXL-88 required for 50% maximal binding to human and murine AXL were 0.118 and 0.164 µg/mL, respectively. Furthermore, DAXL-88 bound to human AXL with high affinity (KD  ~ 370 pM). DAXL-88 blocked the interaction between AXL and its ligand, growth arrest-specific gene 6 (GAS6), with a half maximal inhibitory concentration of 2.16 µg/mL. Moreover, DAXL-88 inhibited AXL/GAS6-dependent cell signalling, which is implicated in cell migration and invasion. In conclusion, the novel anti-AXL DAXL-88 high-affinity antibody blocks the interaction between AXL and GAS6 and inhibits tumour cell migration and invasion induced by GAS6. Thus, DAXL-88 offers promise for the development of targeted therapeutic strategies in solid tumours, leukaemias and other lymphoid neoplasms.


Subject(s)
Antibodies, Monoclonal/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Ovarian Neoplasms/pathology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , A549 Cells , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Cell Movement , Female , Humans , Molecular Docking Simulation , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasm Metastasis/prevention & control , Protein Binding , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/immunology , Signal Transduction , Axl Receptor Tyrosine Kinase
10.
Biotechnol Lett ; 39(9): 1309-1323, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28560579

ABSTRACT

OBJECTIVES: To find a "me-better" antibody by epitope-specific antibody optimization and multi-parametric analysis. RESULTS: Using epitope-specific library based on the commercial drug, Pertuzumab/2C4, we screened a novel human anti-HER2 antibody, MIL5, which has slightly higher affinity than the drug. MIL5 and 2C4 share the same epitope to bind HER2; however, MIL5 bound to HER2 His235-His245 more tightly than 2C4, which could be the main reason of its enhanced affinity. In vivo experiments also showed MIL5 had stronger anti-cancer activity than 2C4; however, the classical flow cytometry assays to detect cell apoptosis or cycling did not show convincing evidence of the advantages of MIL5. Thus we introduced the multi-parameter in-cell analysis method to evaluate the superiority of MIL5 to 2C4 in arresting cancer cells in G2-phase to inhibit cell growth and/or proliferation. CONCLUSION: Multi-parametric method confirmed stronger arrest of G2 by MIL5 to show better anti-cancer function both in vitro and in vivo than 2C4.


Subject(s)
Antibodies/administration & dosage , Breast Neoplasms/drug therapy , Cell Cycle Checkpoints , G2 Phase/drug effects , Receptor, ErbB-2/antagonists & inhibitors , Animals , Antibodies/metabolism , Cell Line, Tumor , Disease Models, Animal , Epitopes/metabolism , Humans , Mice, Inbred BALB C , Mice, Nude , Protein Binding , Treatment Outcome
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166964, 2024 02.
Article in English | MEDLINE | ID: mdl-37995774

ABSTRACT

Marburg virus (MARV), one member of the Filoviridae family, cause sporadic outbreaks of hemorrhagic fever with high mortality rates. No countermeasures are currently available for the prevention or treatment of MARV infection. Monoclonal antibodies (mAbs) are promising candidates to display high neutralizing activity against MARV infection in vitro and in vivo. Recently, growing evidence has shown that immune effector function including antibody-dependent cell-mediated cytotoxicity (ADCC) is also required for in vivo efficacy of a panel of antibodies. Glyco-engineered methods are widely utilized to augment ADCC function of mAbs. In this study, we generated a fucose-knockout MARV GP-specific mAb named AF-04 and showed that afucosylation dramatically increased its binding affinity to polymorphic FcγRIIIa (F176/V176) compared with the parental AF-03. Accordingly, AF-04-mediated NK cell activation and NFAT expression downstream of FcγRIIIa in effector cells were also augmented. In conclusion, this work demonstrates that AF-04 represents a novel avenue for the treatment of MARV-caused disease.


Subject(s)
Marburgvirus , Antibodies, Monoclonal/therapeutic use
12.
PLoS One ; 19(5): e0302865, 2024.
Article in English | MEDLINE | ID: mdl-38723016

ABSTRACT

Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.


Subject(s)
Antibodies, Monoclonal , Influenza A Virus, H1N1 Subtype , Neuraminidase , Neuraminidase/immunology , Neuraminidase/metabolism , Neuraminidase/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Influenza A Virus, H1N1 Subtype/immunology , Humans , Animals , Antibodies, Viral/immunology , Mice , Influenza A Virus, H5N1 Subtype/immunology , Mice, Inbred BALB C , Antiviral Agents/pharmacology , Viral Proteins/immunology , Viral Proteins/metabolism , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology
13.
Elife ; 122024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526940

ABSTRACT

Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Marburgvirus , Humans , Antibodies, Viral , Molecular Docking Simulation , Glycoproteins , Hemorrhagic Fever, Ebola/prevention & control , Ebolavirus/chemistry
14.
Heliyon ; 10(9): e30551, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756565

ABSTRACT

Natural killer (NK) cells represent key player in immune surveillance to eliminate transformed or malignant cells. One of mechanisms of action of NK cells is antibody-dependent cell-mediated cytotoxicity (ADCC) by recognizing tumor antigens on the surface of cancer cells. However, the heterogeneity of tumor antigens and the scarcity of membrane surface targets significantly restrict this strategy. Recently, we constructed a new cargo by tethering a low pH insertion peptide (pHLIP) to the C terminus of the ectodomain of programed death ligand-1 (PD-L1) and demonstrated its ability to modulate immune responses. Herein, the potential application of PD-L1-pHLIP in cancer therapy was determined. pHLIP tethering had no effect on the binding capacity of PD-L1 protein to an anti-PD-L1 antibody (i.e. avelumab). Association of pHLIP rendered PD-L1 segment display on the surface of cellular membrane in the acidic buffer instead of the neutral solution. Importantly, plate-coated or beads-coupled PD-L1-pHLIP enable robust activation and expression of cytotoxic mediators of NK cells via engaging avelumab. Overall, this work provides proof of concept that recombinant PD-L1 protein decorated on the cellular membrane driven by pHLIP in combination with appropriate monoclonal antibody has potentials to elicit NK cytotoxicity, which may represent a novel and promising therapeutic avenue in cancer.

15.
Biochem Biophys Res Commun ; 436(4): 740-5, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23792093

ABSTRACT

Trastuzumab (Herceptin®) has demonstrated clinical potential in several types of HER2-overexpressing human cancers. However, primary and acquired resistance occurs in many HER2-positive patients with regimens. To investigate the possible mechanism of acquired therapeutic resistance to trastuzumab, we have developed a preclinical model of human ovarian cancer cells, SKOV3/T, with the distinctive feature of stronger carcinogenesis. The differences in gene expression between parental and the resistant cells were explored by microarray analysis, of which IGF-1R and HER3 were detected to be key molecules in action. Their correctness was validated by follow-up experiments of RT-PCR, shRNA-mediated knockdown, downstream signal activation, cell cycle distribution and survival. These results suggest that IGF-1R and HER3 differentially regulate trastuzumab resistance and could be promising targets for trastuzumab therapy in ovarian cancer.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Proliferation , Cell Transformation, Neoplastic , Ovarian Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptor, IGF Type 1/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Trastuzumab , Up-Regulation
16.
Front Microbiol ; 14: 1255935, 2023.
Article in English | MEDLINE | ID: mdl-37954238

ABSTRACT

Smallpox is an infectious disease caused by the variola virus, and it has a high mortality rate. Historically it has broken out in many countries and it was a great threat to human health. Smallpox was declared eradicated in 1980, and Many countries stopped nation-wide smallpox vaccinations at that time. In recent years the potential threat of bioterrorism using smallpox has led to resumed research on the treatment and prevention of smallpox. Effective ways of preventing and treating smallpox infection have been reported, including vaccination, chemical drugs, neutralizing antibodies, and clinical symptomatic therapies. Antibody treatments include anti-sera, murine monoclonal antibodies, and engineered humanized or human antibodies. Engineered antibodies are homologous, safe, and effective. The development of humanized and genetically engineered antibodies against variola virus via molecular biology and bioinformatics is therefore a potentially fruitful prospect with respect to field application. Natural smallpox virus is inaccessible, therefore most research about prevention and/or treatment of smallpox were done using vaccinia virus, which is much safer and highly homologous to smallpox. Herein we summarize vaccinia virus epitope information reported to date, and discuss neutralizing antibodies with potential value for field application.

17.
BMC Immunol ; 13: 40, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22788777

ABSTRACT

BACKGROUND: As a member of the TNF superfamily, TRAIL could induce human tumor cell apoptosis through its cognate death receptors DR4 or DR5, which can induce formation of the death inducing signaling complex (DISC) and activation of the membrane proximal caspases (caspase-8 or caspase-10) and mitochondrial pathway. Some monoclonal antibodies against DR4 or DR5 have been reported to have anti-tumor activity. RESULTS: In this study, we reported a novel mouse anti-human DR5 monoclonal antibody, named as LaDR5, which could compete with TRAIL to bind DR5 and induce the apoptosis of Jurkat cells in the absence of second cross-linking in vitro. Using computer-guided molecular modeling method, the 3-D structure of LaDR5 Fv fragment was constructed. According to the crystal structure of DR5, the 3-D complex structure of DR5 and LaDR5 was modeled using molecular docking method. Based on distance geometry method and intermolecular hydrogen bonding analysis, the key functional domain in DR5 was predicted and the DR5 mutants were designed. And then, three mutants of DR5 was expressed in prokaryotic system and purified by affinity chromatograph to determine the epitope of DR5 identified by LaDR5, which was consistent with the theoretical results of computer-aided analysis. CONCLUSIONS: Our results demonstrated the specific epitope located in DR5 that plays a crucial role in antibody binding and even antineoplastic bioactivity. Meanwhile, revealed structural features of DR5 may be important to design or screen novel drugs agonist DR5.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoglobulin Variable Region/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Animals , Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/immunology , Apoptosis , Binding Sites, Antibody , Binding, Competitive , Epitope Mapping , Humans , Image Processing, Computer-Assisted , Immunoglobulin Variable Region/chemistry , Jurkat Cells , Mice , Mice, Inbred BALB C , Molecular Conformation , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand/metabolism
18.
J Immunol ; 185(6): 3554-63, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20720201

ABSTRACT

Elevated IL-12 production and higher rate of CD4(+) T conventional (Tconv) cell proliferation in NOD mice have been implicated in the progression of type 1 diabetes. However, the underlying mechanisms remain largely unknown, even though enhanced activation of the IkappaB kinase (IKK)/NF-kappaB pathway has been revealed to mediate IL-12 overproduction. In this study, we report that deviated p38 MAPK activation also contributes to elevated IL-12 production with a mechanism involving MAPK-activated protein kinase-2-mediated stabilization of IL-12p40 mRNA. Aberrant p38 activation induced by various inflammatory stimuli in IL-12-overproducing cells is not due to defective MAPK phosphatase-1 induction in NOD mice. Deviated IKK and MAPKs activation also occurs in NOD CD4(+) Tconv cells, which is associated with higher rates of proliferation. All of the above evidence suggests that the signaling defects occur at the level of MAPK kinase kinase (MAK3K or MEKK). Further exploration shows that MEKK3, but not other MAP3Ks, is overexpressed in NOD IL-12-overproducing cells and CD4(+) Tconv cells independent of autoimmune inflammation. MEKK3 knockdown leads to reversal of the deviated IKK and MAPKs activation, resulting in reduced IL-12 production and decreased CD4(+) Tconv cell proliferation. Thus, this study provides a molecular mechanism of the hyperresponsiveness of IL-12-overproducing cells and CD4(+) Tconv cells in NOD mice.


Subject(s)
CD4-Positive T-Lymphocytes/enzymology , CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 1/immunology , Interleukin-12/biosynthesis , MAP Kinase Kinase Kinase 3/biosynthesis , Up-Regulation/immunology , Animals , CD4-Positive T-Lymphocytes/pathology , Cells, Cultured , Diabetes Mellitus, Type 1/genetics , Enzyme Activation/genetics , Enzyme Activation/immunology , Female , I-kappa B Kinase/metabolism , Interleukin-12/genetics , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinase 3/genetics , MAP Kinase Kinase Kinase 3/physiology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Up-Regulation/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Front Immunol ; 13: 831536, 2022.
Article in English | MEDLINE | ID: mdl-35185923

ABSTRACT

Abrin, a type-II ribosome inactivating protein from the seed of Abrus precatorius, is classified as a Category B bioterrorism warfare agent. Due to its high toxicity, ingestion by animals or humans will lead to death from multiple organ failure. Currently, no effective agents have been reported to treat abrin poisoning. In this study, a novel anti-abrin neutralizing antibody (S008) was humanized using computer-aided design, which possessed lower immunogenicity. Similar to the parent antibody, a mouse anti-abrin monoclonal antibody, S008 possessed high affinity and showed a protective effect against abrin both in vitro and in vivo, and protected mice that S008 was administered 6 hours after abrin. S008 was found that it did not inhibit entry of abrin into cells, suggesting an intracellular blockade capacity against the toxin. In conclusion, this work demonstrates that S008 is a high affinity anti-abrin antibody with both a neutralizing and protective effect and may be an excellent candidate for clinical treatment of abrin poisoning.


Subject(s)
Abrin/immunology , Abrin/toxicity , Antibodies, Monoclonal, Humanized/immunology , Antitoxins/immunology , Poisoning/prevention & control , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized/administration & dosage , Antitoxins/administration & dosage , Female , Mice , Mice, Inbred BALB C , Survival Rate
20.
Microbiol Spectr ; 10(3): e0221221, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35384693

ABSTRACT

Ebola virus, a member of the Filoviridae family, utilizes the attachment factors on host cells to support its entry and cause severe tissue damage. TIM-1 has been identified as a predominant attachment factor via interaction with phosphatidylserine (PS) localized on the viral envelope and glycoprotein (GP). In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). Furthermore, two TIM-1 variants (i.e., TIM-1-359aa and TIM-1-364aa) had comparable effects on promoting Zaire Ebola virus (EBOV) attachment, internalization, and infection. Importantly, recombinant TIM-1 ectodomain (ECD) protein could decrease the infectivity of Ebola virus and display synergistic inhibitory effects with ADI-15946, a monoclonal antibody with broad neutralizing activity to Ebola virus. Of note, EBOV strains harboring GP mutations (K510E and D552N), which were refractory to antibody treatment, were still sensitive to TIM-1 protein-mediated impairment of infectivity, indicating that TIM-1 protein may represent an alternative therapeutic regimen when antibody evasion occurs. IMPORTANCE The viral genome has acquired numerous mutations with the potential to increase transmission during the 2013-to-2016 outbreak of Ebola virus. EBOV strains harboring GP mutations (A82V, T544I, and A82V T544I), which have been identified to increase viral infectivity in humans, have attracted our attention. Herein, we give the first report that polymorphic TIM-1 enhances the infectivity of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). We show that recombinant TIM-1 ECD protein could decrease the infectivity of Ebola virus with or without a point mutation and displays synergistic inhibitory effects with ADI-15946. Furthermore, TIM-1 protein potently blocked cell entry of antibody-evading Ebola virus species. These findings highlight the role of TIM-1 in Ebola virus infection and indicate that TIM-1 protein represents a potential therapeutic avenue for Ebola virus and its mutated species.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Ebolavirus/genetics , Genome, Viral , Hemorrhagic Fever, Ebola/epidemiology , Humans , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL