Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Cell ; 36(1): 112-135, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37770034

ABSTRACT

Reactive oxygen species (ROS) play an essential role in plant growth and responses to environmental stresses. Plant cells sense and transduce ROS signaling directly via hydrogen peroxide (H2O2)-mediated posttranslational modifications (PTMs) on protein cysteine residues. Here, we show that the H2O2-mediated cysteine oxidation of NAC WITH TRANS-MEMBRANE MOTIF1-LIKE 1 (GmNTL1) in soybean (Glycine max) during salt stress promotes its release from the endoplasmic reticulum (ER) membrane and translocation to the nucleus. We further show that an oxidative posttranslational modification on GmNTL1 residue Cys-247 steers downstream amplification of ROS production by binding to and activating the promoters of RESPIRATORY BURST OXIDASE HOMOLOG B (GmRbohB) genes, thereby creating a feed-forward loop to fine-tune GmNTL1 activity. In addition, oxidation of GmNTL1 Cys-247 directly promotes the expression of CATION H+ EXCHANGER 1 (GmCHX1)/SALT TOLERANCE-ASSOCIATED GENE ON CHROMOSOME 3 (GmSALT3) and Na+/H+ Antiporter 1 (GmNHX1). Accordingly, transgenic overexpression of GmNTL1 in soybean increases the H2O2 levels and K+/Na+ ratio in the cell, promotes salt tolerance, and increases yield under salt stress, while an RNA interference-mediated knockdown of GmNTL1 elicits the opposite effects. Our results reveal that the salt-induced oxidation of GmNTL1 promotes its relocation and transcriptional activity through an H2O2-mediated posttranslational modification on cysteine that improves resilience of soybean against salt stress.


Subject(s)
Glycine max , Salt Tolerance , Glycine max/genetics , Salt Tolerance/genetics , Hydrogen Peroxide/metabolism , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Cysteine/metabolism , Stress, Physiological/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507661

ABSTRACT

Recent studies have suggested that dogs were domesticated during the Last Glacial Maximum (LGM) in Siberia, which contrasts with previous proposed domestication centers (e.g. Europe, the Middle East, and East Asia). Ancient DNA provides a powerful resource for the study of mammalian evolution and has been widely used to understand the genetic history of domestic animals. To understand the maternal genetic history of East Asian dogs, we have made a complete mitogenome dataset of 120 East Asian canids from 38 archaeological sites, including 102 newly sequenced from 12.9 to 1 ka BP (1,000 years before present). The majority (112/119, 94.12%) belonged to haplogroup A, and half of these (55/112, 49.11%) belonged to sub-haplogroup A1b. Most existing mitochondrial haplogroups were present in ancient East Asian dogs. However, mitochondrial lineages in ancient northern dogs (northeastern Eurasia and northern East Asia) were deeper and older than those in southern East Asian dogs. Results suggests that East Asian dogs originated from northeastern Eurasian populations after the LGM, dispersing in two possible directions after domestication. Western Eurasian (Europe and the Middle East) dog maternal ancestries genetically influenced East Asian dogs from approximately 4 ka BP, dramatically increasing after 3 ka BP, and afterwards largely replaced most primary maternal lineages in northern East Asia. Additionally, at least three major mitogenome sub-haplogroups of haplogroup A (A1a, A1b, and A3) reveal at least two major dispersal waves onto the Qinghai-Tibet Plateau in ancient times, indicating eastern (A1b and A3) and western (A1a) Eurasian origins.


Subject(s)
Genome, Mitochondrial , Animals , Dogs , Animals, Domestic/genetics , Asia, Eastern , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes , Mammals/genetics , Phylogeny
3.
Nature ; 568(7750): 122-126, 2019 04.
Article in English | MEDLINE | ID: mdl-30867595

ABSTRACT

Pericyclic reactions are powerful transformations for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. Their role in biosynthesis is increasingly apparent, and mechanisms by which pericyclases can catalyse reactions are of major interest1. [4+2] cycloadditions (Diels-Alder reactions) have been widely used in organic synthesis2 for the formation of six-membered rings and are now well-established in biosynthesis3-6. [6+4] and other 'higher-order' cycloadditions were predicted7 in 1965, and are now increasingly common in the laboratory despite challenges arising from the generation of a highly strained ten-membered ring system8,9. However, although enzyme-catalysed [6+4] cycloadditions have been proposed10-12, they have not been proven to occur. Here we demonstrate a group of enzymes that catalyse a pericyclic [6+4] cycloaddition, which is a crucial step in the biosynthesis of streptoseomycin-type natural products. This type of pericyclase catalyses [6+4] and [4+2] cycloadditions through a single ambimodal transition state, which is consistent with previous proposals11,12. The [6+4] product is transformed to a less stable [4+2] adduct via a facile Cope rearrangement, and the [4+2] adduct is converted into the natural product enzymatically. Crystal structures of three pericyclases, computational simulations of potential energies and molecular dynamics, and site-directed mutagenesis establish the mechanism of this transformation. This work shows how enzymes are able to catalyse concerted pericyclic reactions involving ambimodal transition states.


Subject(s)
Biocatalysis , Biological Products/chemistry , Biological Products/metabolism , Cycloaddition Reaction , Enzymes/metabolism , Lactones/chemistry , Lactones/metabolism , Crystallography, X-Ray , Density Functional Theory , Enzymes/chemistry , Enzymes/genetics , Molecular Dynamics Simulation , Protein Conformation , Thermodynamics
4.
PLoS Genet ; 18(11): e1010473, 2022 11.
Article in English | MEDLINE | ID: mdl-36413574

ABSTRACT

Histone acetylation has been shown to involve in stress responses. However, the detailed molecular mechanisms that how histone deacetylases and transcription factors function in drought stress response remain to be understood. In this research, we show that ENAP1 and ENAP2 are positive regulators of drought tolerance in plants, and the enap1enap2 double mutant is more sensitive to drought stress. Both ENAP1 and ENAP2 interact with MYB44, a transcription factor that interacts with histone deacetylase HDT4. Genetics data show that myb44 null mutation enhances the sensitivity of enap1enap2 to drought stress. Whereas, HDT4 negatively regulates plant drought response, the hdt4 mutant represses enap1enap2myb44 drought sensitive phenotype. In the normal condition, ENAP1/2 and MYB44 counteract the HDT4 function for the regulation of H3K27ac. Upon drought stress, the accumulation of MYB44 and reduction of HDT4 leads to the enrichment of H3K27ac and the activation of target gene expression. Overall, this research provides a novel molecular mechanism by which ENAP1, ENAP2 and MYB44 form a complex to restrict the function of HDT4 in the normal condition; under drought condition, accumulated MYB44 and reduced HDT4 lead to the elevation of H3K27ac and the expression of drought responsive genes, as a result, plants are drought tolerant.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Droughts , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism
5.
Nano Lett ; 24(14): 4186-4193, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38545933

ABSTRACT

Achieving metal-organic frameworks (MOFs) with nonlinear optical (NLO) switching is profoundly important. Herein, the conductive MOFs Cu-TCNQ phase I (Ph-I) and phase II (Ph-II) films were prepared using the liquid-phase-epitaxial layer-by-layer spin-coating method and steam heating method, respectively. Electronic experiments showed that the Ph-II film could be changed into the Ph-I film under an applied electric field. The third-order NLO results revealed that the Ph-I film had a third-order nonlinear reverse saturation absorption (RSA) response and the Ph-II film displayed a third-order nonlinear saturation absorption (SA) response. With increases in the heating time and applied voltage, the third-order NLO response realized the reversible transition between SA and RSA. The theoretical calculations indicated that Ph-I possessed more interlayer charge transfer, resulting in a third-order nonlinear RSA response that was stronger than that of Ph-II. This work applies phase-transformed MOFs to third-order NLO switching and provides new insights into the nonlinear photoelectric applications of MOFs.

6.
J Am Chem Soc ; 146(30): 21008-21016, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38869376

ABSTRACT

Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.

7.
J Transl Med ; 22(1): 586, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902782

ABSTRACT

The prevalence of papillary thyroid cancer (PTC) has been rising in recent years. Despite its relatively low mortality, PTC frequently metastasizes to lymph nodes and often recurs, posing significant health and economic burdens. The role of iodine in the pathogenesis and advancement of thyroid cancer remains poorly understood. Circular RNAs (circRNAs) are recognized to function as competing endogenous RNAs (ceRNAs) that modulate gene expression and play a role in various cancer stages. Consequently, this research aimed to elucidate the mechanism by which circRNA influences the impact of iodine on PTC. Our research indicates that high iodine levels can exacerbate the malignancy of PTC via the circ_0004851/miR-296-3p/FGF11 axis. These insights into iodine's biological role in PTC and the association of circRNA with the disease could pave the way for novel biomarkers and potentially effective therapeutic strategies to mitigate PTC progression.


Subject(s)
Gene Expression Regulation, Neoplastic , Iodine , MicroRNAs , RNA, Circular , Thyroid Cancer, Papillary , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Iodine/metabolism , Cell Line, Tumor , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Base Sequence
8.
New Phytol ; 241(4): 1605-1620, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38179647

ABSTRACT

Dynamic DNA methylation regulatory networks are involved in many biological processes. However, how DNA methylation patterns change during flower senescence and their relevance with gene expression and related molecular mechanism remain largely unknown. Here, we used whole genome bisulfite sequencing to reveal a significant increase of DNA methylation in the promoter region of genes during natural and ethylene-induced flower senescence in carnation (Dianthus caryophyllus L.), which was correlated with decreased expression of DNA demethylase gene DcROS1. Silencing of DcROS1 accelerated while overexpression of DcROS1 delayed carnation flower senescence. Moreover, among the hypermethylated differentially expressed genes during flower senescence, we identified two amino acid biosynthesis genes, DcCARA and DcDHAD, with increased DNA methylation and reduced expression in DcROS1 silenced petals, and decreased DNA methylation and increased expression in DcROS1 overexpression petals, accompanied by decreased or increased amino acids content. Silencing of DcCARA and DcDHAD accelerates carnation flower senescence. We further showed that adding corresponding amino acids could largely rescue the senescence phenotype of DcROS1, DcCARA and DcDHAD silenced plants. Our study not only demonstrates an essential role of DcROS1-mediated remodeling of DNA methylation in flower senescence but also unravels a novel epigenetic regulatory mechanism underlying DNA methylation and amino acid biosynthesis during flower senescence.


Subject(s)
Dianthus , Syzygium , Dianthus/genetics , Syzygium/metabolism , Plant Senescence , DNA Methylation/genetics , Amino Acids/metabolism , Flowers/genetics , Flowers/metabolism
9.
Plant Physiol ; 192(1): 546-564, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36623846

ABSTRACT

Petal senescence is controlled by a complex regulatory network. Epigenetic regulation like histone modification influences chromatin state and gene expression. However, the involvement of histone methylation in regulating petal senescence remains poorly understood. Here, we found that the trimethylation of histone H3 at Lysine 4 (H3K4me3) is increased during ethylene-induced petal senescence in carnation (Dianthus caryophyllus L.). H3K4me3 levels were positively associated with the expression of transcription factor DcWRKY75, ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DcACS1), and ACC oxidase (DcACO1), and senescence associated genes (SAGs) DcSAG12 and DcSAG29. Further, we identified that carnation ARABIDOPSIS HOMOLOG OF TRITHORAX1 (DcATX1) encodes a histone lysine methyltransferase which can methylate H3K4. Knockdown of DcATX1 delayed ethylene-induced petal senescence in carnation, which was associated with the down-regulated expression of DcWRKY75, DcACO1, and DcSAG12, whereas overexpression of DcATX1 exhibited the opposite effects. DcATX1 promoted the transcription of DcWRKY75, DcACO1, and DcSAG12 by elevating the H3K4me3 levels within their promoters. Overall, our results demonstrate that DcATX1 is a H3K4 methyltransferase that promotes the expression of DcWRKY75, DcACO1, DcSAG12 and potentially other downstream target genes by regulating H3K4me3 levels, thereby accelerating ethylene-induced petal senescence in carnation. This study further indicates that epigenetic regulation is important for plant senescence processes.


Subject(s)
Dianthus , Dianthus/genetics , Dianthus/metabolism , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Histones/metabolism , Epigenesis, Genetic , Ethylenes/metabolism
10.
Plant Cell ; 33(2): 322-337, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33793786

ABSTRACT

Ethylene is an important phytohormone with pleotropic roles in plant growth, development, and stress responses. ETHYLENE INSENSITIVE2 (EIN2) mediates the transduction of the ethylene signal from the endoplasmic reticulum membrane to the nucleus, where its C-terminus (EIN2-C) regulates histone acetylation to mediate transcriptional regulation by EIN3. However, no direct interaction between EIN2-C and EIN3 has been detected. To determine how EIN2-C and EIN3 act together, we followed a synthetic approach and engineered a chimeric EIN2-C with EIN3 DNA-binding activity but lacking its transactivation activity (EIN2C-EIN3DB). The overexpression of EIN2C-EIN3DB in either wild-type or in the ethylene-insensitive mutant ein3-1 eil1-1 led to a partial constitutive ethylene response. Chromatin immunoprecipitation sequencing showed that EIN2C-EIN3DB has DNA-binding activity, indicating that EIN3DB is functional in EIN2C-EIN3DB. Furthermore, native EIN3 protein levels determine EIN2C-EIN3DB binding activity and binding targets in a positive feedback loop by interacting with EIN2C-EIN3DB to form a heterodimer. Additionally, although EIN3 does not direct affect histone acetylation levels in the absence of EIN2, it is required for the ethylene-induced elevation of H3K14Ac and H3K23Ac in the presence of EIN2. Together, we reveal efficient and specific DNA-binding by dimerized EIN3 in the presence of ethylene to mediate positive feedback regulation, which is required for EIN2-directed elevation of histone acetylation to integrate into an EIN3-dependent transcriptional activation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Ethylenes/pharmacology , Feedback, Physiological , Histones/metabolism , Receptors, Cell Surface/metabolism , Transcription Factors/metabolism , Acetylation/drug effects , Arabidopsis/drug effects , Arabidopsis Proteins/chemistry , Base Sequence , DNA, Plant/metabolism , DNA-Binding Proteins/chemistry , Protein Domains , Protein Multimerization/drug effects , Receptors, Cell Surface/chemistry , Transcription Factors/chemistry
11.
Phys Rev Lett ; 132(4): 047001, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335327

ABSTRACT

Quantum communication test beds provide a useful resource for experimentally investigating a variety of communication protocols. Here we demonstrate a superconducting circuit test bed with bidirectional multiphoton state transfer capability using time-domain shaped wave packets. The system we use to achieve this comprises two remote nodes, each including a tunable superconducting transmon qubit and a tunable microwave-frequency resonator, linked by a 2 m-long superconducting coplanar waveguide, which serves as a transmission line. We transfer both individual and superposition Fock states between the two remote nodes, and additionally show that this bidirectional state transfer can be done simultaneously, as well as being used to entangle elements in the two nodes.

12.
Mov Disord ; 39(5): 847-854, 2024 May.
Article in English | MEDLINE | ID: mdl-38477228

ABSTRACT

BACKGROUND: As a biomarker targeting vesicular monoamine transporter 2 (VMAT2), 18F-9-fluoropropyldihydrotetrabenazine (18F-FP-DTBZ) positron emission tomography (PET) is highly accurate in diagnosing Parkinson's disease (PD) and assessing its severity. However, evidence is insufficient in patients with progressive supranuclear palsy (PSP). OBJECTIVE: We evaluated the striatal and extrastriatal monoaminergic disruption of PSP and differences in patterns between patients with PSP, PD, and healthy controls (HCs) using 18F-FP-DTBZ PET, as well as its correlations with the clinical characteristics of PSP. METHODS: We recruited 58 patients with PSP, 23 age- and duration-matched patients with PD, as well as 17 HCs. Patients were scanned using 18F-FP-DTBZ PET/computed tomography, and images were spatially normalized and analyzed based on the volume of interest. RESULTS: VMAT2 binding differed significantly in the striatum and substantia nigra among the groups (P < 0.001). A more severe disruption in the caudate was noted in the PSP group (P < 0.001) than in the PD group. However, no differences were found in the nucleus accumbens, hippocampus, amygdala, or raphe between the PD and PSP groups. Within the PSP group, striatal VMAT2 binding was significantly associated with the fall/postural stability subscore of the PSP Rating Scale, especially in the putamen. Furthermore, VMAT2 binding was correlated with Mini-Mental State Examination or Montreal Cognitive Assessment in the hippocampus. CONCLUSIONS: Caudate disruptions showed prominent differences among the groups. VAMT2 binding in the striatum and hippocampus reflects the severity of fall/postural stability and cognition, respectively. © 2024 International Parkinson and Movement Disorder Society.


Subject(s)
Corpus Striatum , Parkinson Disease , Supranuclear Palsy, Progressive , Vesicular Monoamine Transport Proteins , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/metabolism , Male , Female , Aged , Middle Aged , Vesicular Monoamine Transport Proteins/metabolism , Corpus Striatum/metabolism , Corpus Striatum/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography/methods , Tetrabenazine/analogs & derivatives , Substantia Nigra/diagnostic imaging , Substantia Nigra/metabolism , Substantia Nigra/pathology , Positron Emission Tomography Computed Tomography/methods
13.
J Vasc Interv Radiol ; 35(8): 1194-1202.e2, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723863

ABSTRACT

PURPOSE: To examine the relationship between hyperdense artery sign (HAS)/susceptibility vessel sign (SVS) and thrombus composition and evaluate the effect of HAS/SVS status on the association between first-line thrombectomy techniques and outcomes in patients with acute anterior circulation large vessel occlusion (LVO). MATERIALS AND METHODS: From January 2018 to June 2021, 103 consecutive patients with acute anterior circulation LVO (75 [63.1%] men; median age, 66 years) who underwent thrombectomy and for whom the removed clot was available for histological analyses were retrospectively reviewed. The presence of HAS and SVS was assessed on unenhanced computed tomography (CT) and susceptibility-weighted imaging, respectively. Association of first-line thrombectomy techniques (stent retriever [SR] combined with contact aspiration [CA] vs CA alone) with outcomes was assessed according to HAS/SVS status. RESULTS: Among the included patients, 55 (53.4%) were HAS/SVS-negative, and 69 (67.0%) underwent first-line SR + CA. Higher relative densities of fibrin/platelets (0.56 vs 0.51; P < .001) and lower relative densities of erythrocytes (0.32 vs 0.42; P < .001) were observed in HAS/SVS-negative patients compared with HAS/SVS-positive patients. First-line SR + CA was associated with reduced odds of distal embolization (adjusted odds ratio, 0.18; 95% CI, 0.04-0.83; P = .027) and a more favorable 90-day functional outcome (adjusted odds ratio, 5.29; 95% CI, 1.06-26.34; P = .042) in HAS/SVS-negative patients and a longer recanalization time (53 vs 25 minutes; P = .025) and higher risk of subarachnoid hemorrhage (24.2% vs 0%; P = .044) in HAS/SVS-positive patients. CONCLUSIONS: Absence of HAS/SVS may indicate a higher density of fibrin/platelets in the thrombus, and first-line SR + CA yielded superior functional outcomes than CA alone in patients with acute LVO without HAS/SVS.


Subject(s)
Endovascular Procedures , Stents , Thrombectomy , Humans , Male , Female , Thrombectomy/adverse effects , Thrombectomy/instrumentation , Retrospective Studies , Aged , Treatment Outcome , Middle Aged , Suction , Endovascular Procedures/instrumentation , Endovascular Procedures/adverse effects , Predictive Value of Tests , Risk Factors , Aged, 80 and over , Time Factors , Intracranial Thrombosis/diagnostic imaging , Intracranial Thrombosis/therapy , Intracranial Thrombosis/physiopathology
14.
Inorg Chem ; 63(26): 12100-12108, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38896443

ABSTRACT

Different from the previous neutral reaction solvent system, this work explores the synthesis of Al-oxo rings in ionic environments. Deep eutectic solvents (DESs) formed by quaternary ammonium salts hydrogen bond acceptor (HBA) and phenols hydrogen bond donor (HBD) further reduce the melting point of the reaction system and provide an ionic environment. Further, the quaternary ammonium salt was chosen as the HBA because it contains a halogen anion that matches the size of the central cavity of the molecular ring. Based on this thought, five Al8 ion pair cocrystals were synthesized via "DES thermal". The general formula is Q+ ⊂ {Cl@[Al8(BD)8(µ2-OH)4L12]} (AlOC-180-AlOC-185, Q+ = tetrabutylammonium, tetrapropylammonium, 1-butyl-3-methylimidazole; HBD = phenol, p-chlorophenol, p-fluorophenol; HL = benzoic acid, 1-naphthoic acid, 1-pyrenecarboxylic acid, anthracene-9-carboxylic acid). Structural studies reveal that the phenol-coordinated Al molecular ring and the quaternary ammonium ion pair form the cocrystal compounds. The halogen anions in the DES component are confined in the center of the molecular ring, and the quaternary ammonium cations are located in the organic shell. Such an adaptive cocrystal binding pattern is particularly evident in the structures coordinated with low-symmetry ligands such as naphthoic acid and pyrene acid. Finally, the optical behavior of these cocrystal compounds is understood from the analysis of crystal structure and theoretical calculation.

15.
BMC Womens Health ; 24(1): 7, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166995

ABSTRACT

BACKGROUND: In this study, the prognostic and reproductive outcomes of women who underwent excision of uterine myomas and were sutured using different techniques while undergoing a cesarean section were investigated. METHODS: A total of 299 females who underwent cesarean section between January 2015 and June 2022 due to a scarred uterus were enrolled in this study. These participants were segregated into two categories: the experimental group (comprising 155 cases) in which uterine myoma (single lesion) was excised during the cesarean procedure, and the control group (consisting of 144 cases) in which only the cesarean section was conducted. A comparison between the two groups was carried out based on the following parameters: volume of intraoperative bleeding (mL), additional measures taken for intraoperative hemostasis (n, %), percentage (%) of patients experiencing postoperative fever, duration required for the passage of gas (hours [h]), length of hospital stay (days [d]), weight of newborns (kg) and their Apgar scores, and the reproductive outcomes of the experimental group assessed two years after the surgical procedure. RESULTS: In the experimental group, the amount of bleeding during surgery, occurrence of postoperative fever among women, time taken for patients to resume passing gas, and length of hospital stay were 540.65 ± 269.12 mL, 9.03%, 15.99 ± 4.68 h, and 5.08 ± 1.18 days, respectively. In contrast, the control group had values of 409.03 ± 93.24 mL, 2.77%, 16.24 ± 4.92, and 4.47 ± 0.70 days, respectively (P < 0.05). No notable increase was observed in the need for additional intraoperative hemostasis measures, and there was no significant difference in the time it took for patients to pass gas after the surgery. All newborns had positive health status. In the experimental group, 25 patients underwent subsequent pregnancies, and 15 of them successfully reached full-term deliveries, all of which had positive outcomes. CONCLUSION: Combining myomectomy with various suture methods during cesarean delivery did not cause excessive bleeding and resulted in healthy newborns. This approach offers the advantage of avoiding additional surgeries under anesthesia and can be considered a viable option. Subsequent pregnancies after myomectomy were considered high-risk.


Subject(s)
Leiomyoma , Myoma , Uterine Myomectomy , Uterine Neoplasms , Female , Humans , Infant, Newborn , Pregnancy , Cesarean Section , Leiomyoma/surgery , Leiomyoma/pathology , Prognosis , Retrospective Studies , Uterine Myomectomy/methods , Uterine Neoplasms/surgery , Uterine Neoplasms/pathology , Pregnancy Complications, Neoplastic/pathology , Pregnancy Complications, Neoplastic/surgery
16.
PLoS Genet ; 17(12): e1009955, 2021 12.
Article in English | MEDLINE | ID: mdl-34910726

ABSTRACT

Histone acetylation is involved in the regulation of seed germination. The transcription factor ABI5 plays an essential role in ABA- inhibited seed germination. However, the molecular mechanism of how ABI5 and histone acetylation coordinate to regulate gene expression during seed germination is still ambiguous. Here, we show that ENAP1 interacts with ABI5 and they co-bind to ABA responsive genes including ABI5 itself. The hypersensitivity to ABA of ENAP1ox seeds germination is recovered by the abi5 null mutation. ABA enhances H3K9Ac enrichment in the promoter regions as well as the transcription of target genes co-bound by ENAP1 and ABI5, which requires both ENAP1 and ABI5. ABI5 gene is directly regulated by ENAP1 and ABI5. In the enap1 deficient mutant, H3K9Ac enrichment and the binding activity of ABI5 in its own promoter region, along with ABI5 transcription and protein levels are all reduced; while in the abi5-1 mutant, the H3K9Ac enrichment and ENAP1 binding activity in ABI5 promoter are decreased, suggesting that ENAP1 and ABI5 function together to regulate ABI5- mediated positive feedback regulation. Overall, our research reveals a new molecular mechanism by which ENAP1 regulates H3K9 acetylation and mediates the positive feedback regulation of ABI5 to inhibit seed germination.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Germination/genetics , Transcription Factors/genetics , Acetylation , Arabidopsis/genetics , Arabidopsis/growth & development , Feedback, Physiological , Gene Expression Regulation, Plant/genetics , Plant Growth Regulators/genetics , Protein Processing, Post-Translational/genetics , Seeds/genetics , Seeds/growth & development , Signal Transduction/genetics
17.
Int J Neurosci ; : 1-6, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38557410

ABSTRACT

OBJECTIVE: This study assesses the efficacy of rituximab in the treatment of neuromyelitis optica spectrum disorders (NMOSD). METHODS: The study initially included 40 patients with NMOSD diagnosed, after excluding patients who did not meet the complete inclusion criteria. Patients in the conventional group received routine clinical treatment, while patients in the study group received additional treatment with rituximab on the basis of the conventional treatment. Baseline data and clinically relevant indicators were collected for all patients, and the efficacy was compared between the two groups. RESULTS: Baseline data were comparable between the two groups (p > 0.05). The EDSS scores after clinical treatment in the study group were lower than those in the conventional group, and the difference in EDSS scores before and after treatment was higher than that in the conventional group (p < 0.05). The difference in visual acuity correction before and after treatment was not significant between the two groups (p > 0.05). Laboratory indicators in the study group after clinical treatment were superior to those in the conventional group (all p < 0.05). The recurrence rate after clinical treatment in the study group was significantly lower than that in the conventional group (p < 0.05). Adverse reactions after clinical treatment in the study group were less than those in the conventional group (p < 0.05). CONCLUSION: This study found that rituximab demonstrated significant efficacy in the acute attacks and recurrence prevention of NMOSD, emphasizing its relatively good safety and tolerability. It highlights the potential of rituximab in treating NMOSD and provides valuable insights for future disease management.

18.
J Adv Nurs ; 80(5): 1826-1837, 2024 May.
Article in English | MEDLINE | ID: mdl-37908145

ABSTRACT

AIMS: This study aimed to identify different profiles of chronic disease resource utilization among patients with coronary heart disease in Tibet and explore the relationship between these profiles and quality of life. DESIGN: A cross-sectional study. METHODS: Patients with coronary heart disease who were treated in a tertiary hospital in Tibet and its cooperative points from January 2021 to July 2021 were selected as the study participants. All participants completed a general information questionnaire, the Chronic Disease Resource Utilization Questionnaire (CIRS) and the Health Status Survey Short Form (SF-36). Chronic disease resource utilization was profiled, and its relationship to quality of life was explored using hierarchical linear regression. RESULTS: A total of 382 patients were enrolled in this study. Regarding chronic disease resource utilization, the participants were divided into three latent profiles: 'Poor utilization group' (n = 151), 'Effective utilization group' (n = 155) and 'Full utilization group' (n = 76). Different profiles of chronic disease resource utilization of patients were significantly associated with quality of life (R2 = .126, p < .001). CONCLUSION: Healthcare providers should identify patients with different profiles, define their utilization features of chronic disease resources and adopt targeted interventions to guide them in acquiring enough disease support resources to improve their quality of life. IMPLICATION: Understanding different resources using preferences of coronary heart disease patients can help healthcare providers and related sectors to provide other supports based on different profiles of patients, thus enhancing their quality of life. REPORTING METHOD: The study followed the STROBE guideline. NO PATIENT OR PUBLIC CONTRIBUTION: There was no patient or public involvement in the design of the study.


Subject(s)
Coronary Disease , Quality of Life , Humans , Cross-Sectional Studies , Chronic Disease , Surveys and Questionnaires
19.
Nano Lett ; 23(7): 3062-3069, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36995141

ABSTRACT

Structural asymmetry affecting the nonlinear optics (NLO) of metal-organic frameworks (MOFs) is very important in fundamentals and applications but is still a challenge. Herein we develop a series of indium-porphyrinic framework (InTCPP) thin films and provide the first study on the coordination-induced symmetry breaking on their third-order NLO. The continuous and oriented InTCPP(H2) thin films were grown on quartz substrates and then postcoordinated with different cations (Fe2+ or Fe3+Cl-) in InTCPP(H2) (named InTCPP(Fe2+) and InTCPP(Fe3+Cl-)). The third-order NLO results reveal the Fe2+ and Fe3+Cl- coordinated InTCPP thin films have substantially enhanced NLO performance. Moreover, InTCPP(Fe3+Cl-) thin films cause symmetry breaking of microstructures, resulting in a 3-fold increase in the nonlinear absorption coefficient (up to 6.35 × 10-6 m/W) compared to InTCPP(Fe2+). This work not only develops a series of nonlinear optical MOF thin films but also provides new insight into symmetry breaking on MOFs for nonlinear optoelectronic applications.

20.
Nano Lett ; 23(24): 11562-11568, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38054737

ABSTRACT

Developing artificial enzymes with excellent catalytic activities and uncovering the structural and chemical determinants remain a grand challenge. Discrete titanium-oxo clusters with well-defined coordination environments at the atomic level can mimic the pivotal catalytic center of natural enzymes and optimize the charge-transfer kinetics. Herein, we report the precise structural tailoring of a self-assembled tetrahedral Ti4Mn3-cluster for photocatalytic CO2 reduction and realize the selective evolution of CO over specific sites. Experiments and theoretical simulation demonstrate that the high catalytic performance of the Ti4Mn3-cluster should be related to the synergy between active Mn sites and the surrounding functional microenvironment. The reduced energy barrier of the CO2 photoreduction reaction and moderate adsorption strength of CO* are beneficial for the high selective evolution of CO. This work provides a molecular scale accurate structural model to give insight into artificial enzyme for CO2 photoreduction.

SELECTION OF CITATIONS
SEARCH DETAIL