Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Environ Res ; 228: 115848, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37024026

ABSTRACT

With the shortage of phosphorus resources, the concept of phosphorus recovery from wastewater is generally proposed. Recently, phosphorus recovery from wastewater in the form of vivianite has been widely reported, which could be used as a slow-release fertilizer as well as the production of lithium iron phosphate for Li-ion batteries. In this study, chemical precipitation thermodynamic modeling was applied to evaluate the effect of solution factors on vivianite crystallization with actual phosphorus containing industrial wastewater. The modeling results showed that the solution pH influences the concentration of diverse ions, and the initial Fe2+ concentration affects the formation area of vivianite. The saturation index (SI) of vivianite increased with the initial Fe2+ concentration and Fe:P molar ratio. pH 7.0, initial Fe2+ concentration 500 mg/L and Fe:P molar ratio 1.50 were the optimal conditions for phosphorus recovery. Mineral Liberation Analyzer (MLA) accurately determined the purity of vivianite was 24.13%, indicating the feasibility of recovering vivianite from industrial wastewater. In addition, the cost analysis showed that the cost of recovering phosphorus by the vivianite process was 0.925 USD/kg P, which can produce high-value vivianite products and realize "turn waste into treasure".


Subject(s)
Phosphorus , Wastewater , Phosphates/chemistry , Ferrous Compounds , Waste Disposal, Fluid , Sewage
2.
J Environ Manage ; 326(Pt A): 116653, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36410300

ABSTRACT

For the sake of exploring a new economical and low-carbon alternative for real nitrate-containing wastewater treatment, a new combined partial denitrification-anammox with urea hydrolysis (U-PD-Anammox) process was developed. The nitrogen removal performance of this process was investigated through long-term operation in a sequencing batch reactor (SBR) and two submerged anaerobic biological filters (SABF). Results showed that the average NO3--N to NO2-N transformation ratio improved to 82.6% with organic carbon source to NO3-N ratio of 1.8, and urea hydrolysis provided sufficient NH4+-N and inorganic carbon to anammox process for nitrogen removal. The influent NH4+-N/NO2--N ratio for subsequent anammox reactor could be adjacent to the optimal ratio of 1.32 during the whole operation. The combined process showed efficient nitrogen removal performance with 85% NO3--N removal, 93.8% total nitrogen removal and total nitrogen loading rate as 1.1 ± 0.5 kg N/(m3·d). High-throughput sequencing analysis results revealed that Genera Thauera, Hyphomicrobium and Candidatus Brocadia were the dominant species responsible for partial denitrification, urea hydrolysis and anammox, respectively. The proposed process was more economically and environmental-friendly than the traditional denitrification process with 51.7% operational cost reduction, 99.7% N2O and 60% CO2 emission decrement, facilitating the sustainable development of the nitrate-containing wastewater treatment industry in the future.


Subject(s)
Nitrates , Water Purification , Carbon , Urea , Denitrification , Hydrolysis , Anaerobic Ammonia Oxidation , Nitrogen Dioxide , Nitrogen Oxides , Nitrogen
3.
Environ Res ; 214(Pt 2): 113904, 2022 11.
Article in English | MEDLINE | ID: mdl-35863443

ABSTRACT

The coupled process of thiosulfate-driven denitrification (NO3-→NO2-) and Anammox (TDDA) was a promising process for the treatment of wastewater containing NH4+-N and NO3--N. However, the high concentration of SO42- production limited its application, which needs to be alleviated by an economical and effective way to promote the application of TDDA process. In this study, TDDA process was started in a relatively short time by stepwise replacing nitrite with nitrate and operated continuously for 146 days. Results presented that the average total nitrogen removal efficiency of 82.18% can be acquired at a high loading rate of 1.98 kg N/(m3·d) with maximum nitrogen removal efficiency up to 87.04%. It was observed that the increase of S/N ratio improved the denitrification efficiency and slightly inhibit the Anammox process. Batch tests showed that Sulfammox process appeared in TDDA process under certain conditions, further contributing 2.59% nitrogen removal and 10.46% sulfur removal (14.42 mg/L NH4+-N and 37.68 mg/L SO42--S were removed). This finding was mainly attributed to the reduction of sulfate in TDDA system to elemental S0 or HS-, which subsequently was used as an electron donor to realize the recycling of sulfate (SO42--S) pollutants and promote the sulfur-nitrogen (S-N) cycle. High-throughput analysis displayed that Anammox bacteria (Candidatus_Kuenenia), Sulfur-oxidizing bacteria (Thiobacillus) with relatively high abundance of 5.37%, 7.74%, respectively, guaranteeing the excellent nitrogen and sulfate removal performance in the reactor. The enrichment of phyla Chloroflexi (31.79%), Proteobacteria (31.82%), class Ignavibacteriales (10.55%), genus Planctomycetes (13.57%) further verified the exitence of Sulfammox process in the TDDA reactor. This study provides a new perspective for the practical application of TDDA in terms of reducing the production of high concentration SO42- and saving operational cost and strengthening deeply nitrogen removal.


Subject(s)
Denitrification , Nitrogen , Anaerobic Ammonia Oxidation , Bacteria , Bioreactors , Nitrogen/analysis , Oxidation-Reduction , Sewage , Sulfates , Sulfur , Thiosulfates , Wastewater/analysis
4.
J Environ Manage ; 296: 113203, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34246902

ABSTRACT

The adsorption process for low concentration phosphorus wastewater treatment has advantages of simple convenience, stable performance and less sludge, while most of current adsorbents fail to be separated for reuse. Meanwhile, few people pay attention to the removal of low concentration phosphorus from tail water by adsorbents. In this study, a newly efficient Fe-Mg-Zr layered double hydroxide beads were prepared by simple in-situ crosslinking method and applied for low concentration phosphorus adsorption from real tail water. The maximum adsorption capacity of Fe-Mg-Zr beads was 21.61 mg/g, showing more practical application value for phosphorus removal. Fixed bed experiments showed that 5.0 g adsorbent could removed 2.12 mg phosphorus from tail wastewater containing 1.03 mg/L phosphorus. The beads adsorbent can be reused with excellent adsorption performance even after five cycles of adsorption-desorption operation. After detailed analyses, it was found that ligand exchange and ion exchange were the dominant mechanisms for phosphorus adsorption by this beads. Overall, the material has the advantages of simple preparation, good adsorption performance, easy separation and recycle, indicating a great potential for low concentration phosphorus wastewater treatment.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Humans , Hydrogen-Ion Concentration , Hydroxides , Kinetics , Phosphorus , Wastewater , Water
5.
Chemosphere ; 298: 134302, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35304209

ABSTRACT

Pyrolysis combined with land application for dewatered municipal sludge disposal revealed advantages in heavy metals solidification and resource utilization compared with other disposal technologies. In this study, utilizing dewatered municipal sludge for calcium-containing porous adsorbent preparation via pyrolysis was proposed and verified. After pyrolyzing at 900 ° C (Ca-900), the dewatered sludge obtained maximum adsorption capacity (83.95 mg P⋅ g-1) and the adsorption process conformed to the pseudo-second-order model and double layer model. Characteristic analysis showed the predominant adsorption mechanism was precipitation. Continuous column bed experiment indicated 2 g adsorbent could remove 4.27 mg phosphorus from tail wastewater with the initial phosphorus concentration of 1.03 mg ⋅ L-1. No heavy metals leaching was observed from Ca-900 adsorbent with pH value exceeding 1.0, and merely 1% addition of Ca-900 adsorbent (after actual water phosphorus adsorption) with soil could extremely promote the early growth of seedlings. Economic estimates demonstrated that this cost-effective modification could generate the most add-on value production. Based on these results, the strategy of 'one treatment but two uses' was proposed in this study, converting the wastes to resource and providing a native strategy for sludge disposal and resource recovery.


Subject(s)
Metals, Heavy , Sewage , Adsorption , Calcium , Calcium, Dietary , Charcoal , Fertilizers , Phosphorus
6.
Huan Jing Ke Xue ; 43(4): 2047-2054, 2022 Apr 08.
Article in Zh | MEDLINE | ID: mdl-35393828

ABSTRACT

The feasibility for nitrogen removal in a two-stage ANAMMOX biofilm reactor promoted by Fe2+ under low nitrogen concentration was investigated. The results showed that the ANAMMOX reaction could be effectively promoted by a ρ(Fe2+) of 5, 10, and 15 mg·L-1. A ρ(Fe2+) of 10 mg·L-1 presented the highest promotion for the ANAMMOX reaction, with the highest nitrogen removal efficiency (NRE) of 81.71% under a ρ(TN) of 150 mg·L-1and a nitrogen loading rate (NLR) of 0.62 kg·(m3·d)-1. Fe2+ promoted the secretion of extracellular polymeric substance (EPS) and the synthesis of heme c in the ANAMMOX system. Batch test results further verified the positive effects by Fe2+on the activity of anaerobic ammonium oxidizing bacteria (AnAOB). The specific ANAMMOX activity (SAA) of 10 mg·L-1 ρ(Fe2+) was 3.6 times as high as that of the control group[ρ(Fe2+)=0 mg·L-1], whereas the activity of AnAOB was significantly inhibited with ρ(Fe2+) increased to 20 mg·L-1. High-throughput sequencing results showed that the addition of Fe2+ increased the abundance of Candidatus_Kuenenia. When ρ(Fe2+) was 10 mg·L-1, the relative abundance of Candidatus_Kuenenia in reactor 1 and reactor 2 increased to 16.18% and 4.22%, respectively. The stable operation of the two-stage ANAMMOX biofilm process promoted by Fe2+provides an alternative technology for low-strength nitrogen wastewater.


Subject(s)
Ammonium Compounds , Nitrogen , Anaerobic Ammonia Oxidation , Anaerobiosis , Biofilms , Bioreactors/microbiology , Denitrification , Extracellular Polymeric Substance Matrix/chemistry , Nitrogen/analysis , Oxidation-Reduction , Sewage , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL