Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nano Lett ; 24(37): 11738-11746, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39229926

ABSTRACT

Fluoride-based lanthanide-doped nanoparticles (LDNPs) featuring second near-infrared (NIR-II, 1000-1700 nm) downconversion emission for bioimaging have attracted extensive attention. However, conventional LDNPs cannot be degraded and eliminated from organisms because of an inert lattice, which obstructs bioimaging applications. Herein, the core-shell LDNPs of Na3HfF7:Yb,Er@CaF2:Ce,Zr(Hf) [labeled as Zr(Hf)Ce-HC] with pH-selective and tunable degradability were synthesized for dual-modal bioimaging. Notably, the "softening" lattice of the Na3HfF7 matrix and different Zr4+(Hf4+) doping amounts in the shell enable Zr(Hf)Ce-HC with acidity-dependent and tunable degradability. After coating of an optimized Ce3+-doped CaF2:Zr shell, the near-infrared-IIb (NIR-IIb, 1500-1700 nm) luminescence intensity of ZrCe-HC is enhanced by 5.2 times compared with that of Na3HfF7:Yb,Er. The Hf element with high X-ray attenuation allows ZrCe-HC as the contrast agent for computed tomography (CT) bioimaging. The modification of oxidized sodium alginate endows ZrCe-HC with satisfying biocompatibility for NIR-IIb/CT dual-modal bioimaging. These findings would benefit the bioimaging applications of degradable fluoride-based LDNPs.


Subject(s)
Fluorides , Hafnium , Zirconium , Zirconium/chemistry , Humans , Hafnium/chemistry , Fluorides/chemistry , Nanoparticles/chemistry , Tomography, X-Ray Computed/methods , Animals , Contrast Media/chemistry
2.
World J Microbiol Biotechnol ; 38(5): 78, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35325312

ABSTRACT

A lignocellulolytic microbial consortium holds promise for the in situ biodegradation of crop straw and the comprehensive and effective utilization of agricultural waste. In this study, we applied metagenomics technology to comprehensively explore the metabolic functional potential and taxonomic diversity of the microbial consortia CS (cultured on corn stover) and FP (cultured on filter paper). Analyses of the data on metagenomics taxonomic affiliations revealed considerable differences in the taxonomic composition and carbohydrate-active enzymes profile of the microbial consortia CS and FP. Pseudomonas, Dysgonomonas and Sphingobacterium in CS and Cellvibrio and Pseudomonas in FP had a much wider distribution of lignocellulose degradative ability. The genes for more lignocellulose degradative enzymes were detected when the relatively simple substrate filter paper was used as the carbon source. Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses revealed considerable levels of similarity, and carbohydrate metabolic and amino acid metabolic pathways were the most enriched in CS and FP, respectively. The mechanism used by the two microbial consortia to degrade lignocellulose was similar, but the annotation of quantity of genes indicated that they are diverse and vary greatly. These data underlie the interactions between microorganisms and the synergism of enzymes during the degradative process of lignocellulose under different substrates and suggest the development of potential microbial resources.


Subject(s)
Microbial Consortia , Sphingobacterium , Bacteria/metabolism , Carbon/metabolism , Metagenomics , Microbial Consortia/genetics
3.
J Colloid Interface Sci ; 676: 974-988, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39068841

ABSTRACT

NH2-MIL-88B (Fe) (MOF) is a promising photocatalytic material for antitumor therapy because of its distinctive electronic structure. However, inadequate separation of photo-generated electrons and slow reaction rate in low/high-valence iron (Fe) cycles limit their clinical application. In the present study, "electronic storage station" as a ligand-to-metal charge transfer bridge bond was constructed to inhibit recombination of electron/hole under 650 nm laser irradiation. Cupric (Cu) ions and gallic acid (GA) were self-assembled into a MOF (denoted as CGMOF) to create an FeO(GA)Cu bridge bond. GA, characterized by robust electron delocalization and abundant electron-donating groups, significantly enhances electron transfer efficiency for photodynamic therapy (PDT). CGMOF can respond to endogenous glutathione and release cuprous ions, accelerating the iron ion/ferrous ion cycles for chemodynamic therapy (CDT). The released Fe species can serve as T2-weighted magnetic resonance imaging contrast. Extended X-ray absorption fine structure spectra confirmed the presence of GA-containing FeOCu bonds in CGMOF. Furthermore, a series of photo-electrochemical tests confirmed that the formation of FeO(GA)Cu bond prominently elevated the redox capacity and increased the carrier density of CGMOF by 2.74-fold compared to that of MOF. In addition, cinnamaldehyde was grafted onto CGMOF for tumor-responsive hydrogen peroxide self-supply. Concurrently, hyaluronic acid was surface-modified to achieve the targeted delivery of nano-photosensitizers. In summary, this study presents an innovative approach for engineering Fe-based metal-organic frameworks for synergetic PDT/CDT applications.


Subject(s)
Copper , Gallic Acid , Iron , Metal-Organic Frameworks , Photosensitizing Agents , Gallic Acid/chemistry , Copper/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Catalysis , Humans , Iron/chemistry , Metal-Organic Frameworks/chemistry , Photochemotherapy , Ligands , Theranostic Nanomedicine , Nanoparticles/chemistry , Particle Size , Surface Properties
4.
Micromachines (Basel) ; 14(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37512626

ABSTRACT

SiCp/Al composites have excellent physical properties and are widely used in aerospace and other fields. Because of their poor machinability, they are often machined by non-traditional machining methods such as electrical discharge machining (EDM). In the process of EDM, due to the "shielding" effect of the reinforced particles of SiC, the local ejection force is low during the processing process, and it is difficult to throw the reinforced particles smoothly, which ultimately leads to a low material removal rate and poor surface quality. In this paper, a high-low-voltage composite ejecting-explosion EDM power supply is developed to explore the explosive effect of reinforced particles in the ejecting-explosion EDM process and the unique process law of the explosion process. The experiment platform uses self-developed CNC machining machine tools based on an ejecting-explosive EDM power supply, and the influence of a detonation-increasing wave on the processing of SiCp/Al composites with different volume fractions was studied by changing four factors: the open-circuit voltage difference, pulse current difference, pulse phase difference, and pulse width difference of the back wave behind the step front. The material removal rate and surface roughness were measured. The research results showed that the material removal rate could be increased to 164.63%, and the material surface roughness could be increased to 30.03% by adjusting the high and low pulse current difference from 1 A to 8 A. When the voltage difference between high and low wave (HLW) pulses increases from 40 V to 120 V, the material removal rate can be increased to 150.39%, and the material surface roughness can be increased to 20.49%. The material removal rate increases with the increase in pulse phase difference and open-circuit voltage difference. With the increase in peak current difference and pulse width difference, the material removal rate becomes faster at first and then slower. The surface roughness of materials increases with the growth of open-circuit voltage difference, peak current difference, pulse width difference, and pulse phase difference.

5.
Front Public Health ; 10: 953593, 2022.
Article in English | MEDLINE | ID: mdl-36339194

ABSTRACT

Objective: To improve the quality of life of older adult in their later years, by increasing the physical activity participation of older adult, the occurrence of falls accident scores in older adult can be prevented. This paper comprehensively summarizes the origin, development, participation forms, and fitness effects of the Otago exercise program (OEP). Methods: Using PubMed, web of science, CNKI, dimensional spectrum, and other databases, search for research papers from 2005 to April 2021 by using keywords such as Otago project exercise; aged, Fall; Cognitive function, Balance ability, Lower limb strength, Fall efficiency, and so on. PEDro Scale was used to check the quality of the literatures. Results: A total of 34 papers were included after searching for kinds of literature related to the subject of this paper and after careful review by researchers. Conclusions: Otago exercise programme is beneficial to improve the cognitive function of older adult, enhance their lower limb muscle strength and dynamic and static balance ability, and then improve the gait stability and posture control ability of older adult, which has significant positive benefits for the prevention of falls in older adult. OEP is helpful to improve the falling efficiency of older adult, help older adult overcome the fear of falling, and form a positive emotion of "exercise improves exercise," to reduce the harm caused by sedentary behavior and the incidence of depression and improve their subjective wellbeing. Although OEP has significant positive effects on improving the health and physical fitness of older adult, preventing falls, and restoring clinical function, the corresponding neural mechanism for preventing falls is not very clear. At the same time, how OEP can be combined with emerging technologies to maximize its benefits needs to be further discussed in the future.


Subject(s)
Accidental Falls , Exercise Therapy , Humans , Aged , Accidental Falls/prevention & control , Exercise Therapy/methods , Quality of Life , Fear , Exercise
SELECTION OF CITATIONS
SEARCH DETAIL