Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Sheng Li Xue Bao ; 72(3): 263-273, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32572425

ABSTRACT

Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the adult central nervous system (CNS), however, it causes excitation in the immature CNS neurons. The shift from GABA-induced depolarization to hyperpolarization in postnatal brain is primarily due to progressive decrease in the expression of the Na+-K+-2Cl- symporter 1 (NKCC1) and increased expression of the K+-Cl- cotransporter 2 (KCC2). Unlike CNS neurons, both immature and mature neurons in the enteric nervous system (ENS) are depolarized by GABA. Molecular mechanisms by which GABA excites ENS neurons are unclear. It is understood, however, that the excitatory action depends on elevated intraneuronal Cl-. We aimed to test a hypothesis that high intracellular Cl- in ENS neurons is maintained by activity of the NKCCs. We found that NKCC2 immunoreactivity (IR) was expressed in the ENS of the rat colon on postnatal day 1 (P1). The expression level of NKCC2 continuously increased and reached a steady high level on P14 and maintained at that level in adulthood. NKCC1 IR appeared in ENS on P14 and maintained through adulthood. KCC2 IR was not detectable in the ENS in any of the developmental stages. Both NKCC1 IR and NKCC2 IR were co-expressed with GABAA receptors in ENS neurons. Exogenous GABA (1 mmol/L) caused membrane depolarization in the ENS neurons. The reversal potential of GABA-induced depolarization was about -16 mV. Blockade of NKCC by bumetanide (50 µmol/L) or furosemide (300 µmol/L) suppressed the depolarizing responses to GABA. Bumetanide (50 µmol/L) shifted the reversal potential of GABA-induced depolarization in the hyperpolarizing direction. Neither the KCC blocker DIOA (20 µmol/L) nor the Cl-/HCO3- exchanger inhibitor DIDS (200 µmol/L) suppressed GABA-evoked depolarization. The results suggest that ENS neurons continuously express NKCC2 since P1 and NKCC1 since P14, which contribute to the accumulation of Cl- in ENS neurons and GABA-evoked depolarization in neonate and adult ENS neurons. These results provide the first direct evidence for the contribution of both NKCC2 and NKCC1 to the GABAA-mediated depolarization.


Subject(s)
Receptors, GABA-A , Symporters , Animals , Bumetanide , Neurons , Rats , gamma-Aminobutyric Acid
2.
Tumour Biol ; 37(4): 5645-51, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26581907

ABSTRACT

The level of microRNA-93 (miR-93) in tumors has been recently reported to be negatively correlated with survival of lung cancer patients. Considering that the most devastating aspect of lung cancer is metastasis, which can be promoted by transforming growth factor-ß (TGF-ß)-induced epithelial-to-mesenchymal transition (EMT), we sought to determine whether miR-93 is involved in this process. Here, we report that a previously unidentified target of miR-93, neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L), is able to mediate TGF-ß-mediated EMT in lung cancer cells. miR-93 binds directly to the 3'-UTR of the NEDD4L messenger RNA (mRNA), leading to a downregulation of NEDD4L expression at the protein level. We next demonstrated that the downregulation of NEDD4L enhanced, while overexpression of NEDD4L reduced TGF-ß signaling, reflected by increased phosphorylation of SMAD2 in the lung cancer cell line after TGF-ß treatment. Furthermore, overexpression of miR-93 in lung cancer cells promoted TGF-ß-induced EMT through downregulation of NEDD4L. The analysis of publicly available gene expression array datasets indicates that low NEDD4L expression correlates with poor outcomes among patients with lung cancer, further supporting the oncogenic role of miR-93 in lung tumorigenesis and metastasis.


Subject(s)
Endosomal Sorting Complexes Required for Transport/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Transforming Growth Factor beta/genetics , Ubiquitin-Protein Ligases/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Endosomal Sorting Complexes Required for Transport/biosynthesis , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , Male , MicroRNAs/biosynthesis , Nedd4 Ubiquitin Protein Ligases , Neoplasm Metastasis , Neoplasm Staging , Smad2 Protein/biosynthesis , Ubiquitin-Protein Ligases/biosynthesis
3.
Tumour Biol ; 37(10): 14183-14191, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27553023

ABSTRACT

Radiotherapy resistance is one of the major factors limiting the efficacy of radiotherapy in lung cancer patients. The extensive investigations indicate the diversity in the mechanisms underlying radioresistance. Here, we revealed that DNA damage binding protein 2 (DDB2) is a potential regulator in the radiosensitivity of non-small cell lung cancer (NSCLC) cells. DDB2, originally identified as a DNA damage recognition factor in the nucleotide excision repair, promotes the survival and inhibits the apoptosis of NSCLC cell lines upon ionizing radiation (IR). Mechanistic investigations demonstrated that DDB2 is able to facilitate IR-induced phosphorylation of Chk1, which plays a critical role in the cell cycle arrest and DNA repair in response to IR-induced DNA double-strand breaks (DSBs). Indeed, knockdown of DDB2 compromised the G2 arrest in the p53-proficient A549 cell line and reduced the efficiency of homologous recombination (HR) repair. Taken together, our data indicate that the expression of DDB2 in NSCLC could be used as a biomarker to predict radiosensitivity of the patients. Targeting Chk1 can be used to increase the efficacy of radiotherapy in patients of NSCLC possessing high levels of DDB2.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , DNA Breaks, Double-Stranded/radiation effects , DNA-Binding Proteins/metabolism , Lung Neoplasms/radiotherapy , Radiation Tolerance/genetics , Recombinational DNA Repair/genetics , Apoptosis/radiation effects , Blotting, Western , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Checkpoints/radiation effects , Cell Proliferation/radiation effects , DNA-Binding Proteins/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Phosphorylation , Radiation, Ionizing , Recombinational DNA Repair/radiation effects , Tumor Cells, Cultured
4.
Am J Physiol Gastrointest Liver Physiol ; 308(11): G955-63, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25813057

ABSTRACT

Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to ß-nicotinamide adenine dinucleotide (ß-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, ß-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. ß-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of ß-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of ß-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for ß-NAD at intestinal neuromuscular junctions. The data suggest that ß-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of ß-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions.


Subject(s)
Colon/physiology , Jejunum/physiology , Muscle Contraction , NAD/metabolism , Receptor, Adenosine A1/metabolism , Synaptic Transmission , Adenosine/analogs & derivatives , Adenosine/pharmacokinetics , Adenosine A1 Receptor Agonists/pharmacokinetics , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacokinetics , Animals , Colon/pathology , Deoxyadenine Nucleotides/pharmacokinetics , Electric Stimulation/methods , Guinea Pigs , Humans , Jejunum/pathology , Ligands , Membrane Potentials/physiology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/physiology , Neuromuscular Junction/physiology , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
5.
Neurol Sci ; 36(11): 2027-33, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26169757

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive phospholipid that activates at least five known G-protein-coupled receptors (GPCRs): LPA1-LPA5. The nervous system is a major locus for LPA1 expression. LPA has been shown to regulate neuronal proliferation, migration, and differentiation during central nervous system development as well as neuronal survival. Furthermore, deficient LPA signaling has been implicated in several neurological disorders including neuropathic pain and schizophrenia. Parkinson's disease (PD) is a neurodegenerative movement disorder that results from the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The specific molecular pathways that lead to DA neuron degeneration, however, are poorly understood. The influence of LPA in the differentiation of mesenchymal stem cells (MSCs) into DA neurons in vitro and LPA1 expression in a 6-hydroxydopamine (6-OHDA) lesion model of PD in vivo were examined in the present study. LPA induced neuronal differentiation in 80.2 % of the MSC population. These MSCs developed characteristic neuronal morphology and expressed the neuronal marker, neuron-specific enolase (NSE), while expression of the glial marker, glial fibrillary acidic protein (GFAP), was absent. Moreover, 27.6 % of differentiated MSCs were positive for tyrosine hydroxylase (TH), a marker for DA neurons. In the 6-OHDA PD rat model, LPA1 expression in the substantia nigra was significantly reduced compared to control. These results suggest LPA signaling via activation of LPA1 may be necessary for DA neuron development and survival. Furthermore, reduced LPA/LPA1 signaling may be involved in DA neuron degeneration thus contributing to the pathogenesis of PD.


Subject(s)
Dopaminergic Neurons/physiology , Lysophospholipids/metabolism , Neurogenesis/physiology , Parkinsonian Disorders/physiopathology , Receptors, Lysophosphatidic Acid/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Central Nervous System Agents/administration & dosage , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Female , Glial Fibrillary Acidic Protein/metabolism , Lysophospholipids/administration & dosage , Male , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/physiology , Myenteric Plexus/metabolism , Neurogenesis/drug effects , Oxidopamine , Parkinsonian Disorders/pathology , Phosphopyruvate Hydratase/metabolism , Rats, Sprague-Dawley , Signal Transduction , Substantia Nigra/pathology , Substantia Nigra/physiopathology , Tyrosine 3-Monooxygenase/metabolism
6.
Am J Physiol Gastrointest Liver Physiol ; 307(7): G719-31, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25147231

ABSTRACT

Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²âº by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.


Subject(s)
Enteric Nervous System/physiology , Intestine, Small/innervation , Mast Cells/metabolism , Spinal Nerves/physiology , Animals , Cell Degranulation , Chymases/metabolism , Electric Stimulation , Enteric Nervous System/metabolism , Excitatory Postsynaptic Potentials , Guinea Pigs , Histamine Release , Humans , Male , Mast Cells/drug effects , Neurons, Afferent/physiology , Paracrine Communication , Sensory System Agents/pharmacology , Spinal Nerves/metabolism , Substance P/metabolism , Time Factors
7.
Drug Discov Today ; 29(7): 104045, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797321

ABSTRACT

V-domain Ig suppressor of T cell activation (VISTA) is a recently identified member of the B7 family of immunoregulatory proteins. It is pivotal for maintaining T cell quiescence and exerts a significant regulatory influence on the immune response to tumors. Accumulating clinical evidence suggests that the influence of VISTA on tumor immunity is more nuanced than initially postulated. Although these revelations add layers of complexity to our understanding of the function of VISTA, they also offer novel avenues for scientific inquiry and potential therapeutic targets. In this review, we scrutinize the current literature pertaining to the expression of VISTA in various of malignancies, aiming to elucidate its intricate roles within the tumor microenvironment and in cancer immunotherapy.


Subject(s)
B7 Antigens , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/immunology , Neoplasms/therapy , B7 Antigens/immunology , B7 Antigens/metabolism , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals
8.
Exp Ther Med ; 28(2): 333, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006500

ABSTRACT

Immunotherapy is a potent tool used in cancer treatment, but the occurrence of immune-related adverse events induced by immune checkpoint inhibitors (ICIs) cannot be overlooked. This is particularly true for rare but potentially fatal cardiovascular complications, such as myocarditis; heart muscle inflammation may lead to heart dysfunction and arrhythmia. The present case is a 68-year-old female breast cancer patient who developed palpitations and elevated cardiac enzyme levels after 1 day of ICI therapy, and the patient was eventually diagnosed with immune myocarditis. After receiving hormonal shock therapy, Ctn I, CK, CK-MB and other cardiac enzyme-related markers improved significantly, and electrocardiogram test returned to normal, and the patient recovered during hospitalization without any major adverse cardiac events. Furthermore, the present study reviewed the mechanism of immune myocarditis induced by ICI therapy, with the aim of providing a clinical foundation for the prevention and diagnosis of cardiovascular adverse events in ICI therapy.

9.
Exp Ther Med ; 27(5): 199, 2024 May.
Article in English | MEDLINE | ID: mdl-38544554

ABSTRACT

Diffuse cystic lung diseases (DCLDs) are a group of heterogeneous lung diseases that are characterized by inflated spaces or cysts within the lung parenchyma. They also exhibit similar imaging characteristics and clinical manifestations compared with those of cystic lesions, such as pulmonary cavities, emphysema, bronchiectasis and honeycomb lung. The most common DCLDs encountered in the clinic include lymphangioleiomyomatosis, Birt-Hogg-Dubé syndrome, Langerhans cell histiocytosis and lymphocytic interstitial pneumonia. In particular, accurate diagnosis of DCLDs in terms of the different lesions found is important, because their clinical courses, prognoses and treatment strategies vary widely. However, because DCLDs usually have overlapping clinical presentations, diagnosis typically requires a combination of clinical considerations that take into account characteristics of the cyst, its distribution, organ of origin and background parenchymal findings. The present report documents the case of a 73-year-old man diagnosed with desquamative interstitial pneumonia (DIP). The patient was admitted to the hospital due to chest tightness, shortness of breath and intermittent fever. The patient had been a smoker for >60 years and had stopped smoking for 6 months before being admitted. A transbronchial lung biopsy, bronchoscopy and alveolar lavage cytopathogen culture were performed to confirm the diagnosis of desquamative interstitial pneumonia (DIP). The patient was treated with hormonal therapy and advised to abstain from smoking. The diagnosis of DIP in comparison with other DCLDs was summarized for the purpose of providing a clinical basis for the accurate clinical diagnosis of DIP and the development of evidence-based practice guidelines.

10.
J Diabetes Res ; 2024: 5544296, 2024.
Article in English | MEDLINE | ID: mdl-39263491

ABSTRACT

Aim: The aim of the study is to identify the regulatory role of intestinal sweet taste receptors (STRs) and glucose transporters (SGLT1, GLUT2) and gut peptide secretion in duodenal-jejunal bypass (DJB)-ameliorated glycemic control in Type 2 diabetes. Materials and Methods: DJB and sham surgeries were performed in streptozotocin-induced diabetic male rats. The blood GLP-1 and GLP-2 levels were evaluated under feeding and fasting conditions. The expression of STRs (T1R2, T1R3), sweet taste signaling effector (Gα-gustducin), SGLT1, and GLUT2 was detected in the intestinal alimentary limb (A limb), biliopancreatic limb (BP limb), and common limb (C limb). The effects of STR inhibition on glucose control were measured with lactisole. Results: Glucose tolerance was improved in DJB-operated rats compared with the sham group, similar to that of normal control rats, without significant differences in food intake and body weight. The plasma GLP-1 levels of DJB rats were increased under diet-fed condition, and GLP-2 levels were increased after fasting. The villus height and crypt depth were significantly increased in the A limb of DJB-operated rats. In addition, GLP-1 expression was restored in enterocytes. The expression of T1R2, Gα-gustducin, and SGLT1 was elevated in the A limb after DJB, while GLUT2 was downregulated in the A, BP, and C limbs. The localization of GLUT2 was normalized in the three intestinal limbs after DJB. However, the beneficial effects of DJB on glucose control were abolished in the presence of lactisole in vivo. Conclusion: DJB ameliorates glycemic control probably by restoring STR-mediated glucose sensing and absorption with the responses of GLP-1 and GLP-2 to carbohydrate.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Duodenum , Glucagon-Like Peptide 1 , Glucose Transporter Type 2 , Jejunum , Receptors, G-Protein-Coupled , Sodium-Glucose Transporter 1 , Animals , Male , Sodium-Glucose Transporter 1/metabolism , Glucose Transporter Type 2/metabolism , Jejunum/surgery , Jejunum/metabolism , Duodenum/surgery , Duodenum/metabolism , Diabetes Mellitus, Experimental/surgery , Diabetes Mellitus, Experimental/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Blood Glucose/metabolism , Glucagon-Like Peptide 1/metabolism , Intestinal Absorption , Glucagon-Like Peptide 2/metabolism , Glucose/metabolism , Rats, Sprague-Dawley , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/surgery , Transducin/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/surgery
11.
Oncol Lett ; 27(6): 259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646492

ABSTRACT

Lung cancer is the most common cancer in the world due to its high incidence and recurrence. Genetic instability is one of the main factors leading to its occurrence, development and poor prognosis. Decreased xeroderma pigmentosum group C (XPC) expression notably enhances the stem cell properties of lung cancer cells and increases their proliferation and migration. Additionally, patients with lung cancer and low XPC expression had a poor prognosis. The purpose of the present study was to analyze the effect of XPC and IFN-γ on the clinical prognosis of patients with non-small cell lung cancer (NSCLC). Lung adenocarcinoma specimens were collected from a total of 140 patients with NSCLC. Additionally, from these 140 patients, 48 paracarcinoma tissue specimens were also collected, which were later used to construct tissue microarrays. The expression of XPC and IFN-γ in cancer tissues and in paraneoplastic tissues was detected using immunohistochemistry. The prognosis and overall survival of patients were determined through telephone follow-up. The results showed a positive correlation between expression of XPC and IFN-γ in NSCLC. Additionally, high expression of both markers was associated with a favorable prognosis in patients with NSCLC. The aforementioned findings suggest that the expression of XPC and IFN-γ has prognostic value in clinical practice and is expected to become a marker for clinical application.

12.
World J Diabetes ; 15(2): 287-304, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38464379

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is often accompanied by impaired glucose utilization in the brain, leading to oxidative stress, neuronal cell injury and infla-mmation. Previous studies have shown that duodenal jejunal bypass (DJB) surgery significantly improves brain glucose metabolism in T2DM rats, the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear. AIM: To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats. METHODS: A T2DM rat model was induced via a high-glucose and high-fat diet, combined with a low-dose streptozotocin injection. T2DM rats were divided into DJB operation and Sham operation groups. DJB surgical intervention was carried out on T2DM rats. The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis. Proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry, quantitative real-time PCR, Western blotting, and immunofluorescence. RESULTS: Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery, compared to the T2DM-Sham groups of rats. Oxidative stress-related proteins (glucagon-like peptide 1 receptor, Nrf2, and HO-1) were significantly increased (P < 0.05) in the hypothalamus of rats with T2DM after DJB surgery. DJB surgery significantly reduced (P < 0.05) hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin (IL)-1ß and IL-6. DJB surgery significantly reduced (P < 0.05) the expression of factors related to neuronal injury (glial fibrillary acidic protein and Caspase-3) in the hypothalamus of T2DM rats and upregulated (P < 0.05) the expression of neuroprotective factors (C-fos, Ki67, Bcl-2, and BDNF), thereby reducing hypothalamic injury in T2DM rats. CONCLUSION: DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.

13.
Int J Mol Med ; 54(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963035

ABSTRACT

Globally, non­small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre­preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP­loaded PNA­modified liposomes (CDDP­PNA­Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP­PNA­Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti­tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)­loaded PNA­modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP­PNA­Lip resulted in a 2.65­fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand­modified liposomes may significantly improve its tumour­targeting capabilities, providing valuable insights for clinical drug development.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cisplatin , Liposomes , Lung Neoplasms , Peanut Agglutinin , Cisplatin/pharmacology , Cisplatin/administration & dosage , Liposomes/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Animals , Peanut Agglutinin/chemistry , Cell Line, Tumor , Mice , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Mice, Nude , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Mice, Inbred BALB C , Cell Movement/drug effects , Female , Drug Delivery Systems/methods
14.
Am J Physiol Gastrointest Liver Physiol ; 304(10): G855-63, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23518679

ABSTRACT

Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature.


Subject(s)
Intestinal Mucosa/metabolism , Mast Cells/metabolism , Receptor, Serotonin, 5-HT1A/biosynthesis , Animals , Blotting, Western , Cromolyn Sodium/pharmacology , Enteric Nervous System/metabolism , Enzyme-Linked Immunosorbent Assay , Guinea Pigs , Histamine H1 Antagonists/pharmacology , Humans , Immunohistochemistry , Indicators and Reagents , Intestines/cytology , Intestines/drug effects , Ketotifen/pharmacology , Male , Mast Cells/drug effects , Neuroglia/physiology , Neurons/physiology , Phosphodiesterase Inhibitors/pharmacology , Piperazines/pharmacology , Serotonin Antagonists/pharmacology , Tetrodotoxin/pharmacology , Thioxanthenes/pharmacology , Xanthones/pharmacology , p-Methoxy-N-methylphenethylamine/pharmacology
15.
J Nanosci Nanotechnol ; 13(10): 6575-80, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24245117

ABSTRACT

Ceria nanoparticles (nano-ceria) are widely used for various applications such as catalytic converters for automobile exhaust, ultraviolet absorber, and electrolyte in fuel cells. Their potential impacts on the environment and human health have also drawn people's attention. The present study was designed to explore the pulmonary toxicity of nano-ceria in mice after an acute intratracheal instillation. CD-1 mice were exposed to 0.04, 0.4, 4 and 40 microg nano-ceria (corresponding to 10, 100, 1000 and 10000 times of the maximum exposure dose, respectively) and sacrificed at 1, 7, and 28 d post-exposure. Lung injury was assessed by bronchoalveolar ravage fluid (BALF) analysis, cell counts, biochemical analysis of lung homogenate, and histopathology. Cell differential analysis of the BALF show that the numbers of neutrophils and lymphocytes increased significantly in the mice exposed to 40 microg nano-ceria at 1 d after instillation, and returned to control levels by 7 d. The lactate dehydrogenate activity in the BALF from the 40 microg group increased significantly during the whole experimental period. Pathological changes were only found in the lung tissues from the mice of 40 microg nano-ceria group. The changes were most obvious by 7 d post-exposure, and returned to normal by 28 d. No other changes were found. The results of the present study suggest that exposure to nano-ceria at the current levels in the ambient air may not cause respiratory toxicity.


Subject(s)
Cerium/chemistry , Lung/drug effects , Nanoparticles/toxicity , Trachea , Animals , Bronchoalveolar Lavage Fluid , Dose-Response Relationship, Drug , Male , Mice , Nanoparticles/administration & dosage , Oxidative Stress
16.
Biotechnol Genet Eng Rev ; : 1-21, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36578157

ABSTRACT

As a clinical emergency with a high mortality rate, the treatment of acute liver failure has been paid attention to by society. At present, liver transplantation is the most effective treatment for acute liver failure, but there is still an insufficient supply of liver sources and a poor prognosis. In view of the current therapeutic development of this disease, more researchers have turned their attention to the research of drugs related to the NF-κB pathway. The NF-κB canonical pathway has been proven to play a role in a variety of diseases, regulating inflammation, apoptosis, and other physiological processes. More and more evidence shows that the NF-κB canonical pathway regulates the pathogenesis of acute liver failure. In this review, we will summarize the regulation process of the NF-κB canonical pathway on acute liver failure, and develop a new way to treat acute liver failure by targeting the components of the pathway.

17.
Front Genet ; 13: 957937, 2022.
Article in English | MEDLINE | ID: mdl-36276938

ABSTRACT

A reducing sugar reacts with the protein, resulting in advanced glycation end-products (AGEs), which have been implicated in diabetes-related complications. Recently, it has been found that both type 1 and type 2 diabetic patients suffer from not only glucose but also ribose dysmetabolism. Here, we compared the effects of ribose and glucose glycation on epigenetics, such as histone methylation and demethylation. To prepare ribose-glycated (riboglycated) proteins, we incubated 150 µM bovine serum albumin (BSA) with 1 M ribose at different time periods, and we evaluated the samples by ELISAs, Western blot analysis, and cellular experiments. Riboglycated BSA, which was incubated with ribose for approximately 7 days, showed the strongest cytotoxicity, leading to a significant decrease in the viability of SH-SY5Y cells cultured for 24 h (IC50 = 1.5 µM). A global demethylation of histone 3 (H3K4) was observed in SH-SY5Y cells accompanied with significant increases in lysine-specific demethylase-1 (LSD1) and plant homeodomain finger protein 8 (PHF8) after treatment with riboglycated BSA (1.5 µM), but demethylation did not occur after treatment with glucose-glycated (glucoglycated) proteins or the ribose, glucose, BSA, and Tris-HCl controls. Moreover, a significant demethylation of H3K4, H3K4me3, and H3K4me2, but not H3K4me1, occurred in the presence of riboglycated proteins. A significant increase of formaldehyde was also detected in the medium of SH-SY5Y cells cultured with riboglycated BSA, further indicating the occurrence of histone demethylation. The present study provides a new insight into understanding an epigenetic mechanism of diabetes mellitus (DM) related to ribose metabolic disorders.

18.
Bosn J Basic Med Sci ; 22(5): 707-715, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35122478

ABSTRACT

Besides the two main histologic types of papillary thyroid carcinoma (PTC), the classical PTC (CL-PTC) and the follicular variant PTC (FV-PTC), several other variants are described. The encapsulated FV-PTC variant was recently reclassified as noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) due to its similarities to benign lesions. Specific molecular signatures, however, are still unavailable. It is well known that improper DNA repair of dysfunctional telomeres may cause telomere-related genome instability. The mechanisms involved in the damaged telomere repair processing may lead to detrimental outcomes, altering the three-dimensional (3D) nuclear telomere and genome organization in cancer cells. This pilot study aimed to evaluate whether a specific 3D nuclear telomere architecture might characterize NIFTP, potentially distinguishing it from other PTC histologic variants. Our findings demonstrate that 3D telomere profiles of CL-PTC and FV-PTC were different from NIFTP and that NIFTP more closely resembles follicular thyroid adenoma (FTA). NIFTP has longer telomeres than CL-PTC and FV-PTC samples, and the telomere length of NIFTP overlaps with that of the FTA histotype. In contrast, there was no association between BRAF expression and telomere length in all tested samples. These preliminary findings reinforce the view that NIFTP is closer to non-malignant thyroid nodules and confirm that PTC features short telomeres.


Subject(s)
Adenocarcinoma, Follicular , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Thyroid Neoplasms , Adenocarcinoma, Follicular/genetics , Adenocarcinoma, Follicular/metabolism , Adenocarcinoma, Follicular/pathology , CD4-Positive T-Lymphocytes , Humans , Lung Neoplasms/genetics , Pilot Projects , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
19.
Obes Surg ; 32(4): 1119-1129, 2022 04.
Article in English | MEDLINE | ID: mdl-35080701

ABSTRACT

BACKGROUND: Although gastric surgery can significantly improve blood glucose homeostasis in type 2 diabetes mellitus (T2DM), its mechanism remains unclear. This study evaluated the role of intestinal glucose sensing, glucose transport, and metabolism in the alimentary limb (A limb) of T2DM rats after duodenal jejunal bypass (DJB) surgery. METHODS: A T2DM rat model was induced via a high-glucose high-fat diet and low-dose streptozotocin injection. The diabetic rats were divided into two groups: the DJB surgery (T2DM-DJB) group and the sham surgery (T2DM-Sham) group. Wistar rats were used as wild-type control (Control). Small animal PET was used to assess the change in glucose metabolic status in the intestine. The intestinal villi height and the number of EECs after DJB were evaluated. The expressions of sweet taste receptors (T1R2/T1R3), glucose transporters (SGLT1/GLUT2), and key enzymes involved in glucose metabolism (HK2, PFK2, PKM2, G6Pase, and PCK1) in the A limb after DJB was detected by Western blot and qRT-PCR. RESULTS: Small animal PET analysis showed the intestinal glucose metabolism increased significantly 6 weeks after DJB surgery. The intestinal villi height and the number of EECs in the A limb 6 weeks after surgery increased significantly in T2DM-DJB rats comparing to T2DM-Sham rats. The mRNA and protein expression of T1R1/T1R3 and SGLT1/GLUT2 were downregulated in DJB-T2DM rats, while enzymes involved in glucose metabolism was upregulated in the A limb in T2DM-DJB rats. CONCLUSION: Proximal intestinal glucose sensing and metabolism play an important role in blood glucose homeostasis by DJB.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastric Bypass , Obesity, Morbid , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/surgery , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/surgery , Duodenum/metabolism , Duodenum/surgery , Glucose/metabolism , Glycemic Control , Humans , Jejunum/metabolism , Jejunum/surgery , Obesity, Morbid/surgery , Rats , Rats, Wistar
20.
Front Pharmacol ; 13: 893151, 2022.
Article in English | MEDLINE | ID: mdl-35784721

ABSTRACT

Tumor-associated antigen mucin 1 (MUC1) is highly expressed in colorectal cancer and is positively correlated with advanced stage at diagnosis and poor patient outcomes. The combination of irinotecan and capecitabine is standard chemotherapy for metastatic colorectal cancer and is known as XELIRI or CAPIRI, which significantly prolongs the progression-free survival and overall survival of colorectal cancer patients compared to a single drug alone. We previously reported that peanut agglutinin (PNA)-conjugated liposomes showed enhanced drug delivery efficiency to MUC1-positive liver cancer cells. In this study, we prepared irinotecan hydrochloride (IRI) and capecitabine (CAP)-coloaded liposomes modified by peanut agglutinin (IRI/CAP-PNA-Lips) to target MUC1-positive colorectal cancer. The results showed that IRI/CAP-PNA-Lips showed an enhanced ability to target MUC1-positive colorectal cancer cells compared to unmodified liposomes. Treatment with IRI/CAP-PNA-Lips also increased the proportion of apoptotic cells and inhibited the proliferation of colorectal cancer cells. The targeting specificity for tumor cells and the antitumor effects of PNA-modified liposomes were significantly increased in tumor-bearing mice with no severe cytotoxicity to normal tissues. These results suggest that PNA-modified liposomes could provide a new delivery strategy for the synergistic treatment of colorectal cancer with clinical chemotherapeutic agents.

SELECTION OF CITATIONS
SEARCH DETAIL