Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neuropsychobiology ; 73(3): 184-90, 2016.
Article in English | MEDLINE | ID: mdl-27221315

ABSTRACT

Vasopressin and CRH have complementary roles in the secretion of ACTH following different stress modalities. The concomitant use of V1b and CRF1 receptor antagonists completely inhibits ACTH secretion in response to different stress modalities. The combination of the CRF1 antagonist SSR125543 with the V1b antagonist SSR149415 effectively suppressed plasma ACTH 1.30 h after injection in rats stressed by ether vapor inhalation for 1 min, restraint stress for 1 h or forced swimming for 5 min. The duration of the effect was also studied. The CRF1 antagonist effectively suppressed ACTH secretion in restraint stress, while the V1b antagonist was effective against ether inhalation. Both antagonists were necessary to block the forced swimming stress response. SSR125543 induced a prolonged effect and can be used in a model of prolonged HPA axis blockade.


Subject(s)
Adrenocorticotropic Hormone/drug effects , Antidiuretic Hormone Receptor Antagonists/pharmacology , Corticotropin-Releasing Hormone/drug effects , Hydrocarbons, Halogenated/pharmacology , Indoles/pharmacology , Pyrrolidines/pharmacology , Stress, Psychological/metabolism , Thiazines/pharmacology , Vasopressins/drug effects , Administration, Inhalation , Adrenocorticotropic Hormone/metabolism , Anesthetics, Inhalation/pharmacology , Animals , Corticotropin-Releasing Hormone/metabolism , Ether/pharmacology , Hypothalamo-Hypophyseal System , Male , Models, Animal , Pituitary-Adrenal System , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Vasopressin/metabolism , Restraint, Physical , Swimming , Vasopressins/metabolism
2.
Toxicon ; 60(5): 797-801, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22750220

ABSTRACT

Phoneutria nigriventer spider bite causes priapism, an effect attributed to the peptide toxins Tx2-5 and Tx2-6 and involving nitric oxide. Tx2-6 (MW = 5287) is known to delay the inactivation of Sodium channels in the same fashion as many other venom toxins. In the present study we evaluated the i.p. dose that induces priapism and the other symptoms in mice. Animals killed by the toxin or crude venom (0.85 mg/kg) were autopsied and a pathological study of brain, lung, kidney, liver and heart was undertaken using standard techniques. The same protocol was employed with animals injected with crude venom. Results showed that priapism is the first sign of intoxication, followed by piloerection, abundant salivation and tremors. An i.p. injection of about 0.3 µg/kg induced only priapism with minimal side-effects. The most remarkable histological finding was a general vascular congestion in all organs studied. Penis showed no necrosis or damage. Lungs showed vascular congestion and alveolar hemorrhage. Heart showed also sub-endothelial hemorrhage. Brain showed only a mild edema and vascular congestion. Results obtained with crude venom closely resemble those of purified toxin. We conclude that Tx2-6 have profound effects on the vascular bed especially in lungs and heart, which may be the cause of death. Interestingly brain tissue was less affected and the observed edema may be attributed to respiratory impairment. To the best of our knowledge this is the first histopathological investigation on this toxin and venom suggesting a possible cause of death.


Subject(s)
Neuropeptides/poisoning , Neurotoxins/poisoning , Priapism/chemically induced , Spider Bites/pathology , Spider Venoms/chemistry , Animals , Brain/drug effects , Brain/pathology , Heart/drug effects , Histological Techniques , Lung/drug effects , Lung/pathology , Male , Mice , Neuropeptides/analysis , Neurotoxins/analysis , Priapism/pathology , Spider Bites/mortality
3.
Neuroendocrinology ; 84(5): 309-16, 2006.
Article in English | MEDLINE | ID: mdl-17135717

ABSTRACT

BACKGROUND/AIMS: Corticotrophin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH) and corticosterone are secreted during stress. These mediators may be involved in anxiety, depression and post-traumatic stress disorder, therefore antagonists have been developed to treat such conditions. METHODS: The non-peptide CRH receptor type 1 antagonist CP154,526 and the vasopressin receptor type 1b antagonist SSR149415 were used to suppress the secretion of ACTH induced by ether exposure, forced swimming and restraint in adult male Wistar rats. Doses ranged from 3 to 60 mg/kg s.c. (controls with vehicle) alone or in combination, in varying time schedules to assess the duration and effectiveness of treatments. RESULTS: Stressors increased plasma ACTH by 2.5- to 5-fold in control rats. SSR149415 at doses of 30 mg/kg was more effective at suppressing ACTH secretion after ether exposure and restraint but was ineffective against forced swimming. CP154,526 mildly affected ACTH rise after restraint at doses of 30 mg/kg. The combination of both antagonists at doses of 30 mg/kg effectively blocked the rise in plasma ACTH in all three stresses. The drug effects lasted less than 6 h. CONCLUSION: We demonstrated for the first time that simultaneous blockade of both vasopressin 1b and CRH-R1 receptors effectively abolish the ACTH response to physical and psychological stress modalities.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Antidiuretic Hormone Receptor Antagonists , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Stress, Psychological/pathology , Adrenocorticotropic Hormone/blood , Animals , Drug Administration Routes , Drug Administration Schedule , Drug Combinations , Drug Evaluation, Preclinical , Ether/pharmacology , Indoles/administration & dosage , Male , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Pyrrolidines/administration & dosage , Rats , Rats, Wistar , Restraint, Physical , Stress, Psychological/metabolism , Stress, Psychological/therapy , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL