Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Nat Prod ; 87(4): 906-913, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38430199

ABSTRACT

The chemical diversity of annelids, particularly those belonging to the class Sipuncula, remains largely unexplored. However, as part of a Marine Biodiscovery program in Ireland, the peanut worm Phascolosoma granulatum emerged as a promising source of unique metabolites. The purification of the MeOH/CH2Cl2 extract of this species led to the isolation of six new linear guanidine amides, named phascolosomines A-F (1-6). NMR analysis allowed for the elucidation of their structures, all of which feature a terminal guanidine, central amide linkage, and a terminal isobutyl group. Notably, these guanidine amides were present in unusually high concentrations, comprising ∼3% of the dry mass of the organism. The primary concentration of the phascolosomines in the viscera is similar to that previously identified in linear amides from sipunculid worms and marine fireworms. The compounds from sipunculid worms have been hypothesized to be toxins, while those from fireworms are reported to be defensive irritants. However, screening of the newly isolated compounds for inhibitory bioactivity showed no significant inhibition in any of the assays conducted.


Subject(s)
Amides , Annelida , Guanidines , Animals , Amides/chemistry , Amides/pharmacology , Amides/isolation & purification , Guanidine/chemistry , Guanidine/pharmacology , Guanidines/chemistry , Guanidines/pharmacology , Guanidines/isolation & purification , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Annelida/chemistry
2.
J Nat Prod ; 86(12): 2730-2738, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38032127

ABSTRACT

In our continuing efforts to describe the biological and chemical diversity of sponges from Kimbe Bay, Papua New Guinea, the known 30-norlanostane saponin sarasinoside C1 (1) was identified along with six new analogues named sarasinosides C4, C5, C6, C7, C8, and C9 (2-7) from the sponge Melophlus sarasinorum. The structures of the new compounds were elucidated by analysis of 1D and 2D NMR and HRMS data, as well as comparison with literature data. All new compounds are characterized by the same tetraose moiety, ß-d-Xylp-(1→6)-ß-d-GlcNAcp-(1→2)-[ß-d-GalNAcp-(1→4)]-ß-d-Xylp, as described previously for sarasinoside C1, but differed in their aglycone moieties. When comparing NMR data of sarasinoside C8 with those of known analogues, a misassignment was identified in the configuration of the C-8/C-9 diol for the previously described sarasinoside R (8), and it has been corrected here using a combination of ROESY analysis and molecular modeling.


Subject(s)
Porifera , Saponins , Animals , Porifera/chemistry , Papua New Guinea , Molecular Structure
3.
J Phycol ; 59(6): 1272-1283, 2023 12.
Article in English | MEDLINE | ID: mdl-37792910

ABSTRACT

Species of Ulva have a wide range of commercial applications and are increasingly being recognized as promising candidates for integrated aquaculture. In South Africa, Ulva has been commercially cultivated in integrated seaweed-abalone aquaculture farms since 2002, with more than 2000 tonnes of biomass cultivated per annum in land-based paddle raceways. However, the identity of the species of Ulva grown on these farms remains uncertain. We therefore characterized samples of Ulva cultivated in five integrated multi-trophic aquaculture farms (IMTA) across a wide geographical range and compared them with foliose Ulva specimens from neighboring seashores. The molecular markers employed for this study were the chloroplast-encoded Ribulose-1,5-bisphosphate carboxylase oxygenase (rbcL), the Internal Transcribed Spacer (ITS) of the nuclear, and the chloroplast elongation factor tufA. All currently cultivated specimens of Ulva were molecularly resolved as a single species, U. lacinulata. The same species has been cultivated for over a decade, although a few specimens of two other species were also present in early South African IMTA systems. The name Ulva uncialis is adopted for the Ulva "Species A" by Fort et al. (2021), Molecular Ecology Resources, 22, 86) significantly extending the distribution range for this species. A comparison with wild Ulva on seashores close to the farms resulted in five new distribution records for South Africa (U. lacinulata, U. ohnoi, U. australis, U. stenophylloides, and U. aragoënsis), the first report of a foliose form of U. compressa in the region, and one new distribution record for Namibia (U. australis). This study reiterates the need for DNA confirmation, especially when identifying morphologically simple macroalgae with potential commercial applications.


Subject(s)
Chlorophyta , Seaweed , Ulva , Ulva/genetics , Seaweed/genetics , South Africa , Aquaculture
4.
Org Biomol Chem ; 20(5): 1031-1040, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35018938

ABSTRACT

An abundant sponge of the order Bubarida was selected for further chemical investigation following biological and chemical screening of sponges collected from Futuna Islands in the Indo-Pacific. Ten new nitrogenous bisabolene derivatives were isolated and identified: the monomeric theonellin formamide analogues named bubaridins A-F (1-6) with unusual oxidised linear chains, and the first isocyanide/formamide dimeric and cyclised bisabolenes 7-9. The structure elucidation of these nitrogenous bisabolenes involved HRESIMS, NMR, and ECD analyses, and the chiral compounds were found to be racemates. A biosynthetic hypothesis for the production of these metabolites is proposed and some chemotaxonomic considerations are discussed. Furthermore, the antimicrobial and antitumoral activity were evalutated and the trans-dimer theonellin isocyanide (7) was shown to exhibit potent and selective antifungal activity.


Subject(s)
Antifungal Agents/pharmacology , Cyclohexylamines/pharmacology , Monocyclic Sesquiterpenes/pharmacology , Porifera/chemistry , Animals , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Candida/drug effects , Cell Line, Tumor , Cyclohexylamines/chemical synthesis , Cyclohexylamines/isolation & purification , Humans , Islands , Microbial Sensitivity Tests , Molecular Structure , Monocyclic Sesquiterpenes/chemistry , Monocyclic Sesquiterpenes/isolation & purification , Pacific Ocean
5.
Sci Rep ; 14(1): 11071, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745036

ABSTRACT

The southern coast of Africa is one of the few places in the world where water temperatures are predicted to cool in the future. This endemism-rich coastline is home to two sister species of kelps of the genus Ecklonia maxima and Ecklonia radiata, each associated with specific thermal niches, and occuring primarily on opposite sides of the southern tip of Africa. Historical distribution records indicate that E. maxima has recently shifted its distribution ~ 70 km eastward, to sites where only E. radiata was previously reported. The contact of sister species with contrasting thermal affinities and the occurrence of mixed morphologies raised the hypothesis that hybridization might be occurring in this contact zone. Here we describe the genetic structure of the genus Ecklonia along the southern coast of Africa and investigate potential hybridization and cryptic diversity using a combination of nuclear microsatellites and mitochondrial markers. We found that both species have geographically discrete genetic clusters, consistent with expected phylogeographic breaks along this coastline. In addition, depth-isolated populations were found to harbor unique genetic diversity, including a third Ecklonia lineage. Mito-nuclear discordance and high genetic divergence in the contact zones suggest multiple hybridization events between Ecklonia species. Discordance between morphological and molecular identification suggests the potential influence of abiotic factors leading to convergent phenotypes in the contact zones. Our results highlight an example of cryptic diversity and hybridization driven by contact between two closely related keystone species with contrasting thermal affinities.


Subject(s)
Genetic Variation , Kelp , Phylogeny , Kelp/genetics , Kelp/classification , Phylogeography , Microsatellite Repeats/genetics , Hybridization, Genetic , DNA, Mitochondrial/genetics , Africa, Southern
6.
Prog Chem Org Nat Prod ; 116: 1-36, 2021.
Article in English | MEDLINE | ID: mdl-34698944

ABSTRACT

The term "marine biodiscovery" has been recently been adopted to describe the area of marine natural products dedicated to the search of new drugs. Several maritime countries such as Australia, New Zealand, South Korea, and Japan as well as some European countries have invested significantly in this area of research over the last 50 years. In the late 2000s, research in this field has received significant interest and support in Ireland for exploring new marine bioresources from the nutrient-rich waters of the Northeastern Atlantic Ocean. Despite undeniable success exemplified by the marketing of new drugs, especially in oncology, the integration of new technical but also environmental aspects should be considered. Indeed, global change, particularly in our oceans, such as climate change, biodiversity loss, and the emergence of microbial pathogens, not only affects the environment but ultimately contributes to social inequalities. In this contribution, new avenues and best practices are proposed, such as the development of biorepositories and shared data for the future of marine biodiscovery research. The extension of this type of scientific work will allow humanity to finally make the optimum use of marine bioresources.


Subject(s)
Biodiversity , Biological Products , Atlantic Ocean , Australia , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL