Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Heredity (Edinb) ; 130(5): 278-288, 2023 05.
Article in English | MEDLINE | ID: mdl-36899176

ABSTRACT

Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.


Subject(s)
Conservation of Natural Resources , Metagenomics , Animals , Rats , Australia , Biodiversity , Ecosystem
2.
Heredity (Edinb) ; 131(5-6): 374-386, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806995

ABSTRACT

Using genetic information to develop and implement conservation programs is vital for maintaining biodiversity and ecosystem resilience. Evaluation of the genetic variability within and among remnant populations can inform management of both natural and translocated populations to maximise species' adaptive potential, mitigate negative impacts of inbreeding, and subsequently minimise risk of extinction. Here we use reduced representation sequencing to undertake a genetic assessment of the golden bandicoot (Isoodon auratus), a threatened marsupial endemic to Australia. The currently recognised taxon consists of three subspecies distributed among multiple natural and translocated populations. After confirming the genetic distinctiveness of I. auratus from two closely related taxa, I. fusciventer and I. macrourus, we identified four genetic clusters within I. auratus. These clusters exhibited substantial genetic differentiation (pairwise FST values ranging from 0.18 to 0.65, pairwise DXY ranging from 0.1 to 0.168), reflecting long-term isolation of some populations on offshore islands and the influence of genetic drift. Mainland natural populations in the Kimberley region had the highest genetic diversity and the largest contribution to overall allelic and gene diversity compared to both natural and translocated island populations. A population translocated to Guluwuru Island in the Northern Territory had the lowest genetic diversity. Our data suggest that island populations can appear genetically unique due to genetic drift and this needs to be taken into account when considering genetic diversity in conservation efforts to maintain overall genetic diversity of the species. We effectively demonstrate how genomic information can guide practical conservation planning, especially when declining species are represented by multiple isolated populations.


Subject(s)
Genetic Variation , Genetics, Population , Ecosystem , Metagenomics , Genetic Drift , Conservation of Natural Resources
3.
Sci Rep ; 12(1): 11913, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831431

ABSTRACT

In the face of the current global extinction crisis, it is critical we give conservation management strategies the best chance of success. Australia is not exempt from global trends with currently the world's greatest mammal extinction rate (~ 1 per 8 years). Many more are threatened including the dibbler (Parantechinus apicalis) whose remnant range has been restricted to Western Australia at just one mainland site and two small offshore islands-Whitlock Island (5 ha) and Boullanger Island (35 ha). Here, we used 14 microsatellite markers to quantify genetic variation in the remaining island populations from 2013 to 2018 and incorporated these data into population viability analysis (PVA) models, used to assess factors important to dibbler survival and to provide guidance for translocations. Remnant population genetic diversity was low (< 0.3), and populations were highly divergent from each other (pairwise FSTs 0.29-0.52). Comparison of empirical data to an earlier study is consistent with recent declines in genetic diversity and models projected increasing extinction risk and declining genetic variation in the next century. Optimal translocation scenarios recommend 80 founders for new dibbler populations-provided by captive breeding-and determined the proportion of founders from parental populations to maximise genetic diversity and minimise harvesting impact. The goal of our approach is long-term survival of genetically diverse, self-sustaining populations and our methods are transferable. We consider mixing island with mainland dibblers to reinforce genetic variation.


Subject(s)
Genetic Variation , Marsupialia , Animals , Australia , Conservation of Natural Resources , Marsupialia/genetics , Microsatellite Repeats/genetics , Western Australia
4.
Genes (Basel) ; 10(11)2019 10 28.
Article in English | MEDLINE | ID: mdl-31661830

ABSTRACT

Small and isolated populations are subject to the loss of genetic variation as a consequence of inbreeding and genetic drift, which in turn, can affect the fitness and long-term viability of populations. Translocations can be used as an effective conservation tool to combat this loss of genetic diversity through establishing new populations of threatened species, and to increase total population size. Releasing animals from multiple genetically diverged sources is one method to optimize genetic diversity in translocated populations. However, admixture as a conservation tool is rarely utilized due to the risks of outbreeding depression. Using high-resolution genomic markers through double-digest restriction site-associated sequencing (ddRAD-seq) and life history data collected over nine years of monitoring, this study investigates the genetic and fitness consequences of admixing two genetically-distinct subspecies of Bettongia lesueur in a conservation translocation. Using single nucleotide polymorphisms (SNPs) identified from 215 individuals from multiple generations, we found an almost 2-fold increase in genetic diversity in the admixed translocation population compared to the founder populations, and this was maintained over time. Furthermore, hybrid class did not significantly impact on survivorship or the recruitment rate and therefore we found no indication of outbreeding depression. This study demonstrates the beneficial application of mixing multiple source populations in the conservation of threatened species for minimizing inbreeding and enhancing adaptive potential and overall fitness.


Subject(s)
Genome , Hybridization, Genetic , Polymorphism, Single Nucleotide , Potoroidae/genetics , Animals , Endangered Species , Genetic Fitness
SELECTION OF CITATIONS
SEARCH DETAIL