Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.011
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(3): 462-470, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278966

ABSTRACT

The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.


Subject(s)
Antibodies, Bispecific , HIV-1 , Animals , Mice , Humans , Killer Cells, Natural , Cytotoxicity, Immunologic , Cell Death , Mice, Transgenic
2.
Cell ; 184(19): 4848-4856, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34480864

ABSTRACT

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Subject(s)
SARS-CoV-2/physiology , Animals , Biological Evolution , COVID-19/virology , Humans , Laboratories , SARS-CoV-2/genetics , Zoonoses/virology
3.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34508652

ABSTRACT

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/physiology , COVID-19/transmission , Databases as Topic , Disease Outbreaks , Humans , Louisiana/epidemiology , Phylogeny , Risk Factors , SARS-CoV-2/classification , Texas , Travel , United States/epidemiology
4.
Cell ; 183(1): 143-157.e13, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32877699

ABSTRACT

Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.


Subject(s)
Coronavirus Infections/immunology , Germinal Center/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , Aged, 80 and over , B-Lymphocytes/immunology , COVID-19 , Female , Germinal Center/pathology , Humans , Male , Middle Aged , Pandemics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Spleen/immunology , Spleen/pathology , Tumor Necrosis Factor-alpha/metabolism
5.
Cell ; 178(4): 1004-1015.e14, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398326

ABSTRACT

Lassa virus (LASV) causes hemorrhagic fever and is endemic in West Africa. Protective antibody responses primarily target the LASV surface glycoprotein (GPC), and GPC-B competition group antibodies often show potent neutralizing activity in humans. However, which features confer potent and broadly neutralizing antibody responses is unclear. Here, we compared three crystal structures of LASV GPC complexed with GPC-B antibodies of varying neutralization potency. Each GPC-B antibody recognized an overlapping epitope involved in binding of two adjacent GPC monomers and preserved the prefusion trimeric conformation. Differences among GPC-antibody interactions highlighted specific residues that enhance neutralization. Using structure-guided amino acid substitutions, we increased the neutralization potency and breadth of these antibodies to include all major LASV lineages. The ability to define antibody residues that allow potent and broad neutralizing activity, together with findings from analyses of inferred germline precursors, is critical to develop potent therapeutics and for vaccine design and assessment.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Germ Cells/immunology , Lassa Fever/immunology , Lassa virus/immunology , Membrane Glycoproteins/chemistry , Viral Envelope Proteins/chemistry , Animals , Antigens, Viral/immunology , Chlorocebus aethiops , Drosophila/cytology , Epitopes/chemistry , Epitopes/immunology , HEK293 Cells , Humans , Lassa Fever/virology , Membrane Glycoproteins/immunology , Protein Structure, Secondary , Vero Cells , Viral Envelope Proteins/immunology , Viral Vaccines/immunology
6.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38309273

ABSTRACT

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Subject(s)
Glucose Intolerance , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , ErbB Receptors/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , T-Lymphocytes, Regulatory/metabolism
7.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37236188

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Subject(s)
HIV Infections , Hematopoietic Stem Cell Transplantation , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca fascicularis , Viral Load
8.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38688280

ABSTRACT

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Subject(s)
Hematologic Neoplasms , Muscle Proteins , Mutation , Phosphoproteins , RNA Splicing Factors , Animals , Humans , Mice , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , HEK293 Cells , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Hematopoiesis/genetics , Introns , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Splicing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism
9.
Cell ; 166(1): 5-8, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27368093

ABSTRACT

Recent infectious disease epidemics illustrate how health systems failures anywhere can create disease vulnerabilities everywhere. We must therefore prioritize investments in health care infrastructure in outbreak-prone regions of the world. We describe how "rooted" research collaborations can establish capacity for pathogen surveillance and facilitate rapid outbreak responses.


Subject(s)
Biomedical Research , Disease Outbreaks , Hemorrhagic Fevers, Viral/epidemiology , Africa, Western/epidemiology , Epidemiological Monitoring , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/physiopathology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fevers, Viral/physiopathology , Hemorrhagic Fevers, Viral/virology , International Cooperation , Virology/education
10.
Immunity ; 54(4): 815-828.e5, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852832

ABSTRACT

Protective Ebola virus (EBOV) antibodies have neutralizing activity and induction of antibody constant domain (Fc)-mediated innate immune effector functions. Efforts to enhance Fc effector functionality often focus on maximizing antibody-dependent cellular cytotoxicity, yet distinct combinations of functions could be critical for antibody-mediated protection. As neutralizing antibodies have been cloned from EBOV disease survivors, we sought to identify survivor Fc effector profiles to help guide Fc optimization strategies. Survivors developed a range of functional antibody responses, and we therefore applied a rapid, high-throughput Fc engineering platform to define the most protective profiles. We generated a library of Fc variants with identical antigen-binding fragments (Fabs) from an EBOV neutralizing antibody. Fc variants with antibody-mediated complement deposition and moderate natural killer (NK) cell activity demonstrated complete protective activity in a stringent in vivo mouse model. Our findings highlight the importance of specific effector functions in antibody-mediated protection, and the experimental platform presents a generalizable resource for identifying correlates of immunity to guide therapeutic antibody design.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Female , HEK293 Cells , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulin G/immunology , Mice, Inbred BALB C , Receptors, Fc/immunology
11.
Cell ; 160(3): 420-32, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25635456

ABSTRACT

The barrier to curing HIV-1 is thought to reside primarily in CD4(+) T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to, Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses and that the replication-competent reservoir is primarily found in CD4(+) T cells that remain relatively quiescent.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Virus Integration , Virus Latency , Alu Elements , Clone Cells , Defective Viruses/genetics , Defective Viruses/physiology , HIV Infections/drug therapy , HIV-1/genetics , Humans , Immunologic Memory , Proviruses/physiology , Single-Cell Analysis
12.
Cell ; 160(1-2): 269-84, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25594183

ABSTRACT

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Subject(s)
Bone and Bones/cytology , Intercellular Signaling Peptides and Proteins/metabolism , Intestine, Small/cytology , Mesenchymal Stem Cells/cytology , Animals , Cartilage/metabolism , Intestine, Small/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL
13.
Nature ; 629(8011): 384-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38600385

ABSTRACT

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Subject(s)
Cell Lineage , Clone Cells , Mosaicism , Neurons , Prosencephalon , Aged , Female , Humans , Alleles , Cell Lineage/genetics , Clone Cells/cytology , Clone Cells/metabolism , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Hippocampus/cytology , Homeodomain Proteins/metabolism , Neocortex/cytology , Neural Inhibition , Neurons/cytology , Neurons/metabolism , Parietal Lobe/cytology , Prosencephalon/anatomy & histology , Prosencephalon/cytology , Prosencephalon/metabolism , Single-Cell Analysis , Transcriptome/genetics
14.
Nature ; 625(7993): 189-194, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057663

ABSTRACT

In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.


Subject(s)
Frameshifting, Ribosomal , Pseudouridine , RNA, Messenger , Animals , Humans , Mice , BNT162 Vaccine/adverse effects , BNT162 Vaccine/genetics , BNT162 Vaccine/immunology , Frameshifting, Ribosomal/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pseudouridine/analogs & derivatives , Pseudouridine/metabolism , Ribosomes/metabolism , Protein Biosynthesis
15.
Nature ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143210

ABSTRACT

Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.

16.
Mol Cell ; 82(8): 1557-1572.e7, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35180429

ABSTRACT

During the translation surveillance mechanism known as ribosome-associated quality control, the ASC-1 complex (ASCC) disassembles ribosomes stalled on the mRNA. Here, we show that there are two distinct classes of stalled ribosome. Ribosomes stalled by translation elongation inhibitors or methylated mRNA are short lived in human cells because they are split by the ASCC. In contrast, although ultraviolet light and 4-nitroquinoline 1-oxide induce ribosome stalling by damaging mRNA, and the ASCC is recruited to these stalled ribosomes, we found that they are refractory to the ASCC. Consequently, unresolved UV- and 4NQO-stalled ribosomes persist in human cells. We show that ribosome stalling activates cell-cycle arrest, partly through ZAK-p38MAPK signaling, and that this cell-cycle delay is prolonged when the ASCC cannot resolve stalled ribosomes. Thus, we propose that the sensitivity of stalled ribosomes to the ASCC influences the kinetics of stall resolution, which in turn controls the adaptive stress response.


Subject(s)
DNA Damage , Ribosomes , Humans , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism
18.
Mol Cell ; 81(15): 3041-3042, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358456

ABSTRACT

Einstein et al. (2021) uncover a novel role for the RNA-binding protein YTHDF2, one of the m6A reader proteins, in TNBC proliferation and survival. This study demonstrates the clinical potential of targeting a specific reader protein in the treatment of breast cancer.


Subject(s)
RNA-Binding Proteins , RNA-Binding Proteins/genetics
19.
Cell ; 155(3): 540-51, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24243014

ABSTRACT

Antiretroviral therapy fails to cure HIV-1 infection because latent proviruses persist in resting CD4(+) T cells. T cell activation reverses latency, but <1% of proviruses are induced to release infectious virus after maximum in vitro activation. The noninduced proviruses are generally considered defective but have not been characterized. Analysis of 213 noninduced proviral clones from treated patients showed 88.3% with identifiable defects but 11.7% with intact genomes and normal long terminal repeat (LTR) function. Using direct sequencing and genome synthesis, we reconstructed full-length intact noninduced proviral clones and demonstrated growth kinetics comparable to reconstructed induced proviruses from the same patients. Noninduced proviruses have unmethylated promoters and are integrated into active transcription units. Thus, it cannot be excluded that they may become activated in vivo. The identification of replication-competent noninduced proviruses indicates that the size of the latent reservoir-and, hence, the barrier to cure-may be up to 60-fold greater than previously estimated.


Subject(s)
HIV Infections/drug therapy , HIV Infections/virology , HIV-1/genetics , Virus Latency , Base Sequence , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , DNA Methylation , HIV Long Terminal Repeat , Lymphocyte Activation , Molecular Sequence Data , Mutation , Phylogeny , Proviruses/genetics , Sequence Alignment
20.
Nature ; 602(7897): 393-402, 2022 02.
Article in English | MEDLINE | ID: mdl-35173338

ABSTRACT

Autonomous robots comprise actuation, energy, sensory and control systems built from materials and structures that are not necessarily designed and integrated for multifunctionality. Yet, animals and other organisms that robots strive to emulate contain highly sophisticated and interconnected systems at all organizational levels, which allow multiple functions to be performed simultaneously. Herein, we examine how system integration and multifunctionality in nature inspires a new paradigm for autonomous robots that we call Embodied Energy. Whereas most untethered robots use batteries to store energy and power their operation, recent advancements in energy-storage techniques enable chemical or electrical energy sources to be embodied directly within the structures and materials used to create robots, rather than requiring separate battery packs. This perspective highlights emerging examples of Embodied Energy in the context of developing autonomous robots.

SELECTION OF CITATIONS
SEARCH DETAIL