Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007263

ABSTRACT

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Subject(s)
Genomic Structural Variation/genetics , Genomics/methods , Neoplasms/genetics , Chromosome Inversion/genetics , Chromothripsis , DNA Copy Number Variations/genetics , Gene Rearrangement/genetics , Genome, Human/genetics , Humans , Mutation/genetics , Whole Genome Sequencing/methods
2.
Cell ; 158(4): 705-721, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25126780

ABSTRACT

Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. PAPERCLIP:


Subject(s)
Anti-Bacterial Agents/administration & dosage , Disease Models, Animal , Intestines/microbiology , Microbiota , Obesity/microbiology , Penicillins/administration & dosage , Animals , Bacteria/classification , Bacteria/metabolism , Female , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Microbiota/drug effects , Obesity/metabolism
3.
Genome Res ; 32(1): 55-70, 2022 01.
Article in English | MEDLINE | ID: mdl-34903527

ABSTRACT

Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC) and immune evasion (i.e., CD274). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression.


Subject(s)
Alphapapillomavirus , Oncogene Proteins, Viral , Oropharyngeal Neoplasms , Alphapapillomavirus/metabolism , Carcinogenesis , Humans , Oncogene Proteins, Viral/genetics , Oropharyngeal Neoplasms/genetics , Papillomaviridae/genetics , Papillomaviridae/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Virus Integration/genetics
4.
Proc Natl Acad Sci U S A ; 119(26): e2118755119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35749364

ABSTRACT

Retromer is a heteropentameric complex that plays a specialized role in endosomal protein sorting and trafficking. Here, we report a reduction in the retromer proteins-vacuolar protein sorting 35 (VPS35), VPS26A, and VPS29-in patients with amyotrophic lateral sclerosis (ALS) and in the ALS model provided by transgenic (Tg) mice expressing the mutant superoxide dismutase-1 G93A. These changes are accompanied by a reduction of levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA1, a proxy of retromer function, in spinal cords from Tg SOD1G93A mice. Correction of the retromer deficit by a viral vector expressing VPS35 exacerbates the paralytic phenotype in Tg SOD1G93A mice. Conversely, lowering Vps35 levels in Tg SOD1G93A mice ameliorates the disease phenotype. In light of these findings, we propose that mild alterations in retromer inversely modulate neurodegeneration propensity in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Vesicular Transport Proteins , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
5.
PLoS Biol ; 19(10): e3001419, 2021 10.
Article in English | MEDLINE | ID: mdl-34618807

ABSTRACT

Evolving in sync with the computation revolution over the past 30 years, computational biology has emerged as a mature scientific field. While the field has made major contributions toward improving scientific knowledge and human health, individual computational biology practitioners at various institutions often languish in career development. As optimistic biologists passionate about the future of our field, we propose solutions for both eager and reluctant individual scientists, institutions, publishers, funding agencies, and educators to fully embrace computational biology. We believe that in order to pave the way for the next generation of discoveries, we need to improve recognition for computational biologists and better align pathways of career success with pathways of scientific progress. With 10 outlined steps, we call on all adjacent fields to move away from the traditional individual, single-discipline investigator research model and embrace multidisciplinary, data-driven, team science.


Subject(s)
Computational Biology , Budgets , Cooperative Behavior , Humans , Interdisciplinary Research , Mentoring , Motivation , Publications , Reward , Software
6.
Genome Res ; 29(1): 1-17, 2019 01.
Article in English | MEDLINE | ID: mdl-30563911

ABSTRACT

Human papillomavirus (HPV) is a necessary but insufficient cause of a subset of oral squamous cell carcinomas (OSCCs) that is increasing markedly in frequency. To identify contributory, secondary genetic alterations in these cancers, we used comprehensive genomics methods to compare 149 HPV-positive and 335 HPV-negative OSCC tumor/normal pairs. Different behavioral risk factors underlying the two OSCC types were reflected in distinctive genomic mutational signatures. In HPV-positive OSCCs, the signatures of APOBEC cytosine deaminase editing, associated with anti-viral immunity, were strongly linked to overall mutational burden. In contrast, in HPV-negative OSCCs, T>C substitutions in the sequence context 5'-ATN-3' correlated with tobacco exposure. Universal expression of HPV E6*1 and E7 oncogenes was a sine qua non of HPV-positive OSCCs. Significant enrichment of somatic mutations was confirmed or newly identified in PIK3CA, KMT2D, FGFR3, FBXW7, DDX3X, PTEN, TRAF3, RB1, CYLD, RIPK4, ZNF750, EP300, CASZ1, TAF5, RBL1, IFNGR1, and NFKBIA Of these, many affect host pathways already targeted by HPV oncoproteins, including the p53 and pRB pathways, or disrupt host defenses against viral infections, including interferon (IFN) and nuclear factor kappa B signaling. Frequent copy number changes were associated with concordant changes in gene expression. Chr 11q (including CCND1) and 14q (including DICER1 and AKT1) were recurrently lost in HPV-positive OSCCs, in contrast to their gains in HPV-negative OSCCs. High-ranking variant allele fractions implicated ZNF750, PIK3CA, and EP300 mutations as candidate driver events in HPV-positive cancers. We conclude that virus-host interactions cooperatively shape the unique genetic features of these cancers, distinguishing them from their HPV-negative counterparts.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Neoplasm Proteins , Oncogene Proteins, Viral , Papillomavirus Infections , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/virology , Female , Humans , Male , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/virology , Mutation , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Oncogene Proteins, Viral/biosynthesis , Oncogene Proteins, Viral/genetics , Papillomaviridae/genetics , Papillomaviridae/metabolism
7.
Genome Res ; 28(5): 751-758, 2018 05.
Article in English | MEDLINE | ID: mdl-29588360

ABSTRACT

High-throughput sequencing is a revolutionary technology for the analysis of metagenomic samples. However, querying large volumes of reads against comprehensive DNA/RNA databases in a sensitive manner can be compute-intensive. Here, we present taxMaps, a highly efficient, sensitive, and fully scalable taxonomic classification tool. Using a combination of simulated and real metagenomics data sets, we demonstrate that taxMaps is more sensitive and more precise than widely used taxonomic classifiers and is capable of delivering classification accuracy comparable to that of BLASTN, but at up to three orders of magnitude less computational cost.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Software , Bacteria/classification , Bacteria/genetics , Databases, Nucleic Acid , Humans , Microbiota/genetics , Reproducibility of Results , Rivers/microbiology , Species Specificity , Water Microbiology
8.
Proc Natl Acad Sci U S A ; 115(26): E6030-E6038, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29875142

ABSTRACT

In ∼30% of patients with EGFR-mutant lung adenocarcinomas whose disease progresses on EGFR inhibitors, the basis for acquired resistance remains unclear. We have integrated transposon mutagenesis screening in an EGFR-mutant cell line and clinical genomic sequencing in cases of acquired resistance to identify mechanisms of resistance to EGFR inhibitors. The most prominent candidate genes identified by insertions in or near the genes during the screen were MET, a gene whose amplification is known to mediate resistance to EGFR inhibitors, and the gene encoding the Src family kinase YES1. Cell clones with transposon insertions that activated expression of YES1 exhibited resistance to all three generations of EGFR inhibitors and sensitivity to pharmacologic and siRNA-mediated inhibition of YES1 Analysis of clinical genomic sequencing data from cases of acquired resistance to EGFR inhibitors revealed amplification of YES1 in five cases, four of which lacked any other known mechanisms of resistance. Preinhibitor samples, available for two of the five patients, lacked YES1 amplification. None of 136 postinhibitor samples had detectable amplification of other Src family kinases (SRC and FYN). YES1 amplification was also found in 2 of 17 samples from ALK fusion-positive lung cancer patients who had progressed on ALK TKIs. Taken together, our findings identify acquired amplification of YES1 as a recurrent and targetable mechanism of resistance to EGFR inhibition in EGFR-mutant lung cancers and demonstrate the utility of transposon mutagenesis in discovering clinically relevant mechanisms of drug resistance.


Subject(s)
DNA Transposable Elements , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , ErbB Receptors , Gene Amplification , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms , Proto-Oncogene Proteins c-yes , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-yes/biosynthesis , Proto-Oncogene Proteins c-yes/genetics , Proto-Oncogene Proteins pp60(c-src)/genetics , Proto-Oncogene Proteins pp60(c-src)/metabolism
9.
Bioinformatics ; 35(22): 4843-4845, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31197308

ABSTRACT

MOTIVATION: The association of splicing signatures with disease is a leading area of study for prognosis, diagnosis and therapy. We present a novel fast-performing annotation-dependent tool called SCANVIS for scoring and annotating splice junctions (SJs), with an efficient visualization tool that highlights SJ details such as frame-shifts and annotation support for individual samples or a sample cohort. RESULTS: Using publicly available samples, we show that the tissue specificity inherent in splicing signatures is maintained with the Relative Read Support scoring method in SCANVIS, and we showcase some visualizations to demonstrate the usefulness of incorporating annotation details into sashimi plots. AVAILABILITY AND IMPLEMENTATION: https://github.com/nygenome/SCANVIS and https://bioconductor.org/packages/SCANVIS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA Splicing , Software , Computers
10.
Proc Natl Acad Sci U S A ; 112(5): 1374-9, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25605907

ABSTRACT

The extensively studied cAMP-dependent protein kinase A (PKA) is involved in the regulation of critical cell processes, including metabolism, gene expression, and cell proliferation; consequentially, mis-regulation of PKA signaling is implicated in tumorigenesis. Recent genomic studies have identified recurrent mutations in the catalytic subunit of PKA in tumors associated with Cushing's syndrome, a kidney disorder leading to excessive cortisol production, and also in tumors associated with fibrolamellar hepatocellular carcinoma (FL-HCC), a rare liver cancer. Expression of a L205R point mutant and a DnaJ-PKA fusion protein were found to be linked to Cushing's syndrome and FL-HCC, respectively. Here we reveal contrasting mechanisms for increased PKA signaling at the molecular level through structural determination and biochemical characterization of the aberrant enzymes. In the Cushing's syndrome disorder, we find that the L205R mutation abolishes regulatory-subunit binding, leading to constitutive, cAMP-independent signaling. In FL-HCC, the DnaJ-PKA chimera remains under regulatory subunit control; however, its overexpression from the DnaJ promoter leads to enhanced cAMP-dependent signaling. Our findings provide a structural understanding of the two distinct disease mechanisms and they offer a basis for designing effective drugs for their treatment.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Neoplasms/enzymology , Catalytic Domain , Chromatography, Gel , Crystallization , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Dimerization , Humans , Models, Molecular , Mutation , Protein Conformation , Surface Plasmon Resonance
11.
Genome Res ; 24(7): 1236-50, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24985917

ABSTRACT

We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage.


Subject(s)
Drosophila/genetics , Genetic Variation , MicroRNAs/genetics , RNA, Small Interfering/genetics , Animals , Base Sequence , Cell Line , Computational Biology/methods , Gene Expression , Genetic Loci , Germ Cells , High-Throughput Nucleotide Sequencing , MicroRNAs/chemistry , Molecular Sequence Annotation , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Small Interfering/chemistry , Sequence Alignment
12.
Nature ; 467(7319): 1128-32, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20953170

ABSTRACT

Piwi-associated RNAs (piRNAs), a specific class of 24- to 30-nucleotide-long RNAs produced by the Piwi-type of Argonaute proteins, have a specific germline function in repressing transposable elements. This repression is thought to involve heterochromatin formation and transcriptional and post-transcriptional silencing. The piRNA pathway has other essential functions in germline stem cell maintenance and in maintaining germline DNA integrity. Here we uncover an unexpected function of the piRNA pathway in the decay of maternal messenger RNAs and in translational repression in the early embryo. A subset of maternal mRNAs is degraded in the embryo at the maternal-to-zygotic transition. In Drosophila, maternal mRNA degradation depends on the RNA-binding protein Smaug and the deadenylase CCR4, as well as the zygotic expression of a microRNA cluster. Using mRNA encoding the embryonic posterior morphogen Nanos (Nos) as a paradigm to study maternal mRNA decay, we found that CCR4-mediated deadenylation of nos depends on components of the piRNA pathway including piRNAs complementary to a specific region in the nos 3' untranslated region. Reduced deadenylation when piRNA-induced regulation is impaired correlates with nos mRNA stabilization and translational derepression in the embryo, resulting in head development defects. Aubergine, one of the Argonaute proteins in the piRNA pathway, is present in a complex with Smaug, CCR4, nos mRNA and piRNAs that target the nos 3' untranslated region, in the bulk of the embryo. We propose that piRNAs and their associated proteins act together with Smaug to recruit the CCR4 deadenylation complex to specific mRNAs, thus promoting their decay. Because the piRNAs involved in this regulation are produced from transposable elements, this identifies a direct developmental function for transposable elements in the regulation of gene expression.


Subject(s)
Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Polyadenylation/genetics , RNA Stability , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , 3' Untranslated Regions/genetics , Animals , Argonaute Proteins , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Transposable Elements/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Female , Mothers , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism , Zygote/metabolism
13.
Genome Res ; 21(2): 286-300, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21177960

ABSTRACT

Mirtrons are intronic hairpin substrates of the dicing machinery that generate functional microRNAs. In this study, we describe experimental assays that defined the essential requirements for entry of introns into the mirtron pathway. These data informed a bioinformatic screen that effectively identified functional mirtrons from the Drosophila melanogaster transcriptome. These included 17 known and six confident novel mirtrons among the top 51 candidates, and additional candidates had limited read evidence in available small RNA data. Our computational model also proved effective on Caenorhabditis elegans, for which the identification of 14 cloned mirtrons among the top 22 candidates more than tripled the number of validated mirtrons in this species. A few low-scoring introns generated mirtron-like read patterns from atypical RNA structures, but their paucity suggests that relatively few such loci were not captured by our model. Unexpectedly, we uncovered examples of clustered mirtrons in both fly and worm genomes, including a <8-kb region in C. elegans harboring eight distinct mirtrons. Altogether, we demonstrate that discovery of functional mirtrons, unlike canonical miRNAs, is amenable to computational methods independent of evolutionary constraint.


Subject(s)
Caenorhabditis elegans/genetics , Computational Biology , Drosophila melanogaster/genetics , MicroRNAs/genetics , Alternative Splicing/genetics , Animals , Base Sequence , Exons , Introns , Inverted Repeat Sequences/genetics , MicroRNAs/chemistry , MicroRNAs/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Messenger/genetics , Sequence Alignment , Structure-Activity Relationship
14.
Genome Res ; 21(2): 203-15, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21177969

ABSTRACT

Since the initial annotation of miRNAs from cloned short RNAs by the Ambros, Tuschl, and Bartel groups in 2001, more than a hundred studies have sought to identify additional miRNAs in various species. We report here a meta-analysis of short RNA data from Drosophila melanogaster, aggregating published libraries with 76 data sets that we generated for the modENCODE project. In total, we began with more than 1 billion raw reads from 187 libraries comprising diverse developmental stages, specific tissue- and cell-types, mutant conditions, and/or Argonaute immunoprecipitations. We elucidated several features of known miRNA loci, including multiple phased byproducts of cropping and dicing, abundant alternative 5' termini of certain miRNAs, frequent 3' untemplated additions, and potential editing events. We also identified 49 novel genomic locations of miRNA production, and 61 additional candidate loci with limited evidence for miRNA biogenesis. Although these loci broaden the Drosophila miRNA catalog, this work supports the notion that a restricted set of cellular transcripts is competent to be specifically processed by the Drosha/Dicer-1 pathway. Unexpectedly, we detected miRNA production from coding and untranslated regions of mRNAs and found the phenomenon of miRNA production from the antisense strand of known loci to be common. Altogether, this study lays a comprehensive foundation for the study of miRNA diversity and evolution in a complex animal model.


Subject(s)
Drosophila melanogaster/genetics , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Animals , Base Sequence , Cell Line , Computational Biology , Drosophila melanogaster/metabolism , Female , Male , MicroRNAs/chemistry , RNA Editing/genetics , RNA, Antisense/chemistry , RNA, Antisense/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , Sequence Alignment
15.
RNA ; 18(2): 177-92, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22190743

ABSTRACT

Nucleotide modifications to microRNAs or their precursors can influence their processing and/or activity. A challenge to their analysis is the lack of independent references for the termini generated by primary processing; typically, these are empirically assigned as the most abundant mapped reads. Mirtrons offer such an independent measure since these microRNA hairpins are defined by splicing. Consequently, mirtron-derived reads that deviate from splice sites reflect modification following primary processing. Analysis in Drosophila revealed multiple modification patterns, including select alterations of 5' termini, many 3' resection events, and unexpectedly abundant 3' untemplated monouridylation. Resections occur on mature AGO1-loaded species, whereas uridylation occurs on pre-miRNAs but is compatible with dicing and AGO1 loading. Strikingly, we found many mirtrons whose modified reads are more abundant than those produced by primary processing. In some cases, these abundant modified reads matched the genome owing to fortuitous uridines in downstream flanking exons, thus highlighting the value of an independent reference for the primary-processed sequence. We could further extend the principle of abundant and preferred uridylation of mirtrons, relative to canonical pre-miRNAs, to Caenorhabditis elegans, mouse, and human. Finally, we found that 3' resection occurs broadly across AGO1-loaded canonical miRNA and star species. Altogether, these findings substantially broaden the complexity of terminal modification pathways acting upon small regulatory RNAs.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Base Sequence , Caenorhabditis elegans , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Exons/genetics , Humans , Mice , Molecular Sequence Data , Nucleic Acid Conformation , RNA Splicing
16.
Sci Adv ; 10(12): eadn4649, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517960

ABSTRACT

Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Animals , Mice , Medulloblastoma/genetics , Transposases/genetics , Transposases/metabolism , Hedgehog Proteins/metabolism , Transcription Factors/genetics , Mutagenesis , Cerebellar Neoplasms/genetics
17.
Am J Surg Pathol ; 48(2): 183-193, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38047392

ABSTRACT

Several reports describing a rare primary liver tumor with histologic features reminiscent of follicular thyroid neoplasms have been published under a variety of descriptive terms including thyroid-like, solid tubulocystic, and cholangioblastic cholangiocarcinoma. Although these tumors are considered to represent histologic variants, they lack classic features of cholangiocarcinoma and have unique characteristics, namely immunoreactivity for inhibin and NIPBL::NACC1 fusions. The purpose of this study is to present clinicopathologic and molecular data for a large series of these tumors to better understand their pathogenesis. We identified 11 hepatic tumors with these features. Immunohistochemical and NACC1 and NIPBL fluorescence in situ hybridization assays were performed on all cases. Four cases had available material for whole-genome sequencing (WGS) analysis. Most patients were adult women (mean age: 42 y) who presented with abdominal pain and large hepatic masses (mean size: 14 cm). Ten patients had no known liver disease. Of the patients with follow-up information, 3/9 (33%) pursued aggressive behavior. All tumors were composed of bland cuboidal cells with follicular and solid/trabecular growth patterns in various combinations, were immunoreactive for inhibin, showed albumin mRNA by in situ hybridization, and harbored the NIPBL::NACC1 fusion by fluorescence in situ hybridization. WGS corroborated the presence of the fusion in all 4 tested cases, high tumor mutational burden in 2 cases, and over 30 structural variants per case in 3 sequenced tumors. The cases lacked mutations typical of conventional intrahepatic cholangiocarcinoma. In this report, we describe the largest series of primary inhibin-positive hepatic neoplasms harboring a NIPBL::NACC1 fusion and the first WGS analysis of these tumors. We propose to name this neoplasm NIPBL:NACC1 fusion hepatic carcinoma.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Adult , Humans , Female , In Situ Hybridization, Fluorescence , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Liver Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology , Inhibins , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Cell Cycle Proteins/genetics , Neoplasm Proteins/genetics , Repressor Proteins/genetics
18.
medRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585974

ABSTRACT

Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy. Here, we present Severus: a method for the accurate detection of different types of somatic SVs using a phased breakpoint graph approach. To benchmark various short- and long-read SV detection methods, we sequenced five tumor/normal cell line pairs with Illumina, Nanopore, and PacBio sequencing platforms; on this benchmark Severus showed the highest F1 scores (harmonic mean of the precision and recall) as compared to long-read and short-read methods. We then applied Severus to three clinical cases of pediatric cancer, demonstrating concordance with known genetic findings as well as revealing clinically relevant cryptic rearrangements missed by standard genomic panels.

19.
EMBO J ; 28(2): 99-111, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19078966

ABSTRACT

The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome-wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double-strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels. Without Set1, the H3K4 methylase, 84% of the DSB sites exhibit a severely reduced DSB frequency, the reduction being quantitatively correlated with the local level of H3K4me3 in wild-type cells. Further, we show that this differential histone mark is already established in vegetative cells, being higher in DSB-prone regions than in regions with no or little DSB. Taken together, our results demonstrate that H3K4me3 is a prominent and preexisting mark of active meiotic recombination initiation sites. Novel perspectives to dissect the various layers of the controls of meiotic DSB formation are discussed.


Subject(s)
Histones/metabolism , Meiosis/physiology , Recombination, Genetic , Saccharomyces cerevisiae/metabolism , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Gene Expression Regulation, Fungal , Histone-Lysine N-Methyltransferase , Lysine/metabolism , Methylation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Transcription Factors/genetics , Transcription Factors/physiology
20.
RNA ; 17(11): 1997-2010, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21947201

ABSTRACT

Canonical animal microRNAs (miRNAs) are ∼22-nt regulatory RNAs generated by stepwise cleavage of primary hairpin transcripts by the Drosha and Dicer RNase III enzymes. We performed a genetic screen using an miRNA-repressed reporter in the Drosophila eye and recovered the first reported alleles of fly drosha, an allelic series of its dsRBD partner pasha, and novel alleles of dicer-1. Analysis of drosha mutants provided direct confirmation that mirtrons are independent of this nuclease, as inferred earlier from pasha knockouts. We further used these mutants to demonstrate in vivo cross-regulation of Drosha and Pasha in the intact animal, confirming remarkable conservation of a homeostatic mechanism that aligns their respective levels. Although the loss of core miRNA pathway components is universally lethal in animals, we unexpectedly recovered hypomorphic alleles that gave adult escapers with overtly normal development. However, the mutant photoreceptor neurons exhibited reduced synaptic transmission, without accompanying defects in neuronal development or maintenance. These findings indicate that synaptic function is especially sensitive to optimal miRNA pathway function. These allelic series of miRNA pathway mutants should find broad usage in studies of miRNA biogenesis and biology in the Drosophila system.


Subject(s)
Drosophila melanogaster/genetics , MicroRNAs/biosynthesis , Alleles , Animals , Base Sequence , Gene Expression Regulation , Genetic Testing , MicroRNAs/chemistry , MicroRNAs/genetics , Molecular Sequence Data , Mutation , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL