Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Biochemistry (Mosc) ; 85(12): 1578-1590, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33705296

ABSTRACT

Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014) Bioelectrochemistry, 98, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pKa value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of Bacillus subtilis. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury.


Subject(s)
Anti-Bacterial Agents/pharmacology , Brain Injuries/prevention & control , Mitochondria, Liver/drug effects , Neuroprotective Agents/pharmacology , Nitrobenzenes/pharmacology , Organophosphorus Compounds/pharmacology , Oxadiazoles/pharmacology , Animals , Bacillus subtilis/drug effects , Disease Models, Animal , Energy Metabolism , Mitochondria, Liver/metabolism , Nitrobenzenes/chemistry , Organophosphorus Compounds/chemistry , Oxadiazoles/chemistry , Rats , Thermogenesis
2.
Dokl Biochem Biophys ; 495(1): 342-346, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33368048

ABSTRACT

This work provides the first characteristics of the rhodopsin SpaR from Sphingomonas paucimobilis, aerobic bacteria associated with opportunistic infections. The sequence analysis of SpaR has shown that this protein has unusual DTS motif which has never reported in rhodopsins from Proteobacteria. We report that SpaR operates as an outward proton pump at low pH; however, proton pumping is almost absent at neutral and alkaline pH. The photocycle of this rhodopsin in detergent micelles slows down with an increase in pH because of longer Schiff base reprotonation. Our results show that the novel microbial ion transporter SpaR of interest both as an object for basic research of membrane proteins and as a promising optogenetic tool.


Subject(s)
Proton Pumps/metabolism , Rhodopsin/metabolism , Rhodopsins, Microbial/metabolism , Sphingomonas/metabolism , Hydrogen-Ion Concentration , Light , Optogenetics/methods , Proton Pumps/genetics , Rhodopsin/genetics , Rhodopsins, Microbial/genetics , Sphingomonas/genetics
3.
Biochemistry (Mosc) ; 84(10): 1151-1165, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31694511

ABSTRACT

Uncouplers of oxidative phosphorylation in mitochondria, which have been essential in elucidating the basic principles of cell bioenergetics, have recently attracted a considerable interest as compounds with therapeutic, e.g., neuroprotective, properties. Here, we report the effect of mitofluorescein (mitoFluo), a new protonophoric uncoupler representing a conjugate of fluorescein with decyl(triphenyl)phosphonium, on the electrical activity of neurons from Lymnaea stagnalis. Incubation with mitoFluo in the dark led to a decrease in the absolute value of the resting membrane potential of the neurons and alterations in their spike activity, such as spike broadening, spike amplitude reduction, and increase in the spike frequency. Prolonged incubation at high (tens micromoles) mitoFluo concentrations resulted in complete suppression of neuronal electrical activity. The effect of mitoFluo on the neurons was qualitatively similar to that of the classical mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) but manifested itself after much longer incubation and at higher concentrations. The distinctive feature of mitoFluo is its light-induced effect on the electrical activity of neurons. Changes in the parameters of the neuronal activity upon illumination in the presence of mitoFluo were similar to the light-induced effects of the well-known photosensitizer Rose Bengal, although less pronounced. It was suggested that the effects of mitoFluo on the electrical activity of neurons, both as a mitochondrial uncoupler and a photosensitizer, are mediated by the changes in the cytoplasmic calcium concentration.


Subject(s)
Electric Stimulation , Fluorescein/pharmacology , Fluorescent Dyes/pharmacology , Neurons/drug effects , Photochemotherapy , Protons , Animals , Fluorescein/chemistry , Fluorescent Dyes/chemistry , Neurons/metabolism , Ponds , Snails
4.
Biochemistry (Mosc) ; 82(10): 1140-1146, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29037134

ABSTRACT

In this work, it was found that the ability of common uncouplers - carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and 2,4-dinitrophenol (DNP) - to reduce membrane potential of isolated rat liver mitochondria was diminished in the presence of millimolar concentrations of the known cytochrome c oxidase inhibitor - cyanide. In the experiments, mitochondria were energized by addition of ATP in the presence of rotenone, inhibiting oxidation of endogenous substrates via respiratory complex I. Cyanide also reduced the uncoupling effect of FCCP and DNP on mitochondria energized by succinate in the presence of ferricyanide. Importantly, cyanide did not alter the protonophoric activity of FCCP and DNP in artificial bilayer lipid membranes. The causes of the effect of cyanide on the efficiency of protonophoric uncouplers in mitochondria are considered in the framework of the suggestion that conformational changes of membrane proteins could affect the state of lipids in their vicinity. In particular, changes in local microviscosity and vacuum permittivity could change the efficiency of protonophore-mediated translocation.


Subject(s)
Carbonyl Cyanide m-Chlorophenyl Hydrazone/analogs & derivatives , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/drug effects , Uncoupling Agents/pharmacology , 2,4-Dinitrophenol/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membranes/drug effects , Potassium Cyanide/pharmacology , Rats , Rotenone/pharmacology
6.
Biochemistry (Mosc) ; 80(6): 745-51, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26531019

ABSTRACT

The impact of double bonds in fatty acyl tails of unsaturated lipids on the photodynamic inactivation of ion channels formed by the pentadecapeptide gramicidin A in a planar bilayer lipid membrane was studied. The presence of unsaturated acyl tails protected gramicidin A against photodynamic inactivation, with efficacy depending on the depth of a photosensitizer in the membrane. The protective effect of double bonds was maximal with membrane-embedded chlorin e6-monoethylenediamine monoamide dimethyl ester, and minimal - in the case of water-soluble tri-sulfonated aluminum phthalocyanine (AlPcS3) known to reside at the membrane surface. By contrast, the protective effect of the hydrophilic singlet oxygen scavenger ascorbate was maximal for AlPcS3 and minimal for amide of chlorin e6 dimethyl ester. The depth of photosensitizer position in the lipid bilayer was estimated from the quenching of photosensitizer fluorescence by iodide. Thus, the protective effect of a singlet oxygen scavenger against photodynamic inactivation of the membrane-inserted peptide is enhanced upon location of the photosensitizer and scavenger molecules in close vicinity to each other.


Subject(s)
Gramicidin/chemistry , Ion Channels/chemistry , Lipid Bilayers/chemistry , Photosensitizing Agents/pharmacology , Ascorbic Acid/pharmacology , Gramicidin/metabolism , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Ion Channels/metabolism , Lipid Bilayers/metabolism , Organometallic Compounds/chemistry , Photochemistry , Porphyrins/chemistry , Porphyrins/metabolism , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism
7.
Biochemistry (Mosc) ; 80(12): 1589-97, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26638684

ABSTRACT

A series of permeating cations based on alkyl derivatives of triphenylphosphonium (C(n)-TPP(+)) containing linear hydrocarbon chains (butyl, octyl, decyl, and dodecyl) was investigated in systems of isolated mitochondria, bacteria, and liposomes. In contrast to some derivatives (esters) of rhodamine-19, wherein butyl rhodamine possessed the maximum activity, in the case of C(n)-TPP a stimulatory effect on mitochondrial respiration steadily increased with growing length of the alkyl radical. Tetraphenylphosphonium and butyl-TPP(+) at a dose of several hundred micromoles exhibited an uncoupling effect, which might be related to interaction between C(n)-TPP(+) and endogenous fatty acids and induction of their own cyclic transfer, resulting in transport of protons across the mitochondrial membrane. Such a mechanism was investigated by measuring efflux of carboxyfluorescein from liposomes influenced by C(n)-TPP(+). Experiments with bacteria demonstrated that dodecyl-TPP(+), decyl-TPP(+), and octyl-TPP(+) similarly to quinone-containing analog (SkQ1) inhibited growth of the Gram-positive bacterium Bacillus subtilis, wherein the inhibitory effect was upregulated with growing lipophilicity. These cations did not display toxic effect on growth of the Gram-negative bacterium Escherichia coli. It is assumed that the difference in toxic action on various bacterial species might be related to different permeability of bacterial coats for the examined triphenylphosphonium cations.


Subject(s)
Bacillus subtilis/drug effects , Mitochondria, Liver/drug effects , Onium Compounds/toxicity , Organophosphorus Compounds/chemistry , Animals , Bacillus subtilis/metabolism , Fatty Acids/metabolism , Liposomes , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/metabolism , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Onium Compounds/chemistry , Organophosphorus Compounds/toxicity , Plastoquinone/analogs & derivatives , Plastoquinone/chemistry , Plastoquinone/toxicity , Protons , Rats , Structure-Activity Relationship
8.
Biochemistry (Mosc) ; 77(9): 1038-43, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23157264

ABSTRACT

Using dialkylphospholipid (diphytanyl phosphatidylcholine) instead of the conventional diacylphospholipid (diphytanoyl phosphatidylcholine) in planar lipid bilayer membranes (BLM) led to an increase in the diffusion potential of the penetrating cation plastoquinonyl-decyl-triphenylphosphonium (SkQ1), making it close to the Nernst value, and accelerated translocation of SkQ1 across the BLM as monitored by the kinetics of a decrease in the transmembrane electric current after applying a voltage (current relaxation). The consequences of changing from an ester to an ether linkage between the head groups and the hydrocarbon chains are associated with a substantial reduction in the membrane dipole potential known to originate from dipoles of tightly bound water molecules and carbonyl groups in ester bonds. The difference in the dipole potential between BLM formed of the ester phospholipid and that of the ether phospholipid was estimated to be 100 mV. In the latter case, suppression of SkQ1-mediated proton conductivity of the BLM was also observed.


Subject(s)
Cell Membrane Permeability/drug effects , Esters/chemistry , Ethers/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Plastoquinone/analogs & derivatives , Cations/chemistry , Cations/pharmacology , Molecular Structure , Plastoquinone/chemistry , Plastoquinone/pharmacology
9.
Biochemistry (Mosc) ; 77(9): 975-82, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23157256

ABSTRACT

Boronated derivatives of porphyrins are studied extensively as promising compounds for boron-neutron capture therapy and photodynamic therapy. Understanding of the mechanism of their permeation across cell membranes is a key step in screening for the most efficient compounds. In the present work, we studied the ability of boronated derivatives of chlorin e(6) and porphyrins, which are mono-, di-, and tetra-anions, to permeate through planar bilayer lipid membranes (BLM). The translocation rate constants through the hydrophobic part of the lipid bilayer were estimated for monocarborane and its conjugate with chlorin e(6) by the method of electrical current relaxation. They were similar, 6.6 and 6.8 sec(-1), respectively. Conjugates of porphyrins carrying two and four carborane groups were shown to permeate efficiently through a BLM although they carry two charges and four charges, respectively. The rate of permeation of the tetraanion estimated by the BLM current had superlinear dependence on the BLM voltage. Because the resting potential of most mammalian cells is negative inside, it can be concluded that the presence of negatively-charged boronated groups in compounds should hinder the accumulation of the porphyrins in cells.


Subject(s)
Boron Compounds/metabolism , Fluorides/metabolism , Lipid Bilayers/metabolism , Porphyrins/metabolism , Anions/chemistry , Anions/metabolism , Boron Compounds/chemistry , Chlorophyllides , Fluorides/chemistry , Lipid Bilayers/chemistry , Molecular Structure , Porphyrins/chemistry
10.
Biochemistry (Mosc) ; 77(9): 1029-37, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23157263

ABSTRACT

It is generally accepted that mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Due to this, high values of the membrane potential are highly dangerous, specifically under pathological conditions associated with oxidative stress. Mild uncoupling of oxidative phosphorylation is an approach to preventing hyperpolarization of the mitochondrial membrane. We confirmed data obtained earlier in our group that dodecylrhodamine 19 (C(12)R1) (a penetrating cation from SkQ family not possessing a plastoquinone group) has uncoupling properties, this fact making it highly potent for use in prevention of pathologies associated with oxidative stress induced by mitochondrial hyperpolarization. Further experiments showed that C(12)R1 provided nephroprotection under ischemia/reperfusion of the kidney as well as under rhabdomyolysis through diminishing of renal dysfunction manifested by elevated level of blood creatinine and urea. Similar nephroprotective properties were observed for low doses (275 nmol/kg) of the conventional uncoupler 2,4-dinitrophenol. Another penetrating cation that did not demonstrate protonophorous activity (SkQR4) had no effect on renal dysfunction. In experiments with induced ischemic stroke, C(12)R1 did not have any effect on the area of ischemic damage, but it significantly lowered neurological deficit. We conclude that beneficial effects of penetrating cation derivatives of rhodamine 19 in renal pathologies and brain ischemia may be at least partially explained by uncoupling of oxidation and phosphorylation.


Subject(s)
Brain Ischemia/drug therapy , Kidney/drug effects , Neuroprotective Agents/pharmacology , Rhabdomyolysis/drug therapy , Rhodamines/chemistry , Rhodamines/pharmacology , Uncoupling Agents/pharmacology , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cations/chemistry , Cations/pharmacology , Cell Respiration/drug effects , Disease Models, Animal , Kidney/metabolism , Kidney/pathology , Neuroprotective Agents/chemistry , Oxidative Phosphorylation/drug effects , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Rhabdomyolysis/metabolism , Rhabdomyolysis/pathology , Uncoupling Agents/chemistry
11.
Biochemistry (Mosc) ; 77(9): 983-95, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23157257

ABSTRACT

Novel mitochondria-targeted compounds composed entirely of natural constituents have been synthesized and tested in model lipid membranes, in isolated mitochondria, and in living human cells in culture. Berberine and palmatine, penetrating cations of plant origin, were conjugated by nonyloxycarbonylmethyl residue with the plant electron carrier and antioxidant plastoquinone. These conjugates (SkQBerb, SkQPalm) and their analogs lacking the plastoquinol moiety (C10Berb and C10Palm) penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria in living human cells in culture. Reduced forms of SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In isolated mitochondria and in living cells, the berberine and palmatine moieties were not reduced, so antioxidant activity belonged exclusively to the plastoquinol moiety. In human fibroblasts, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. At higher concentrations, conjugates of berberine and palmatine induced proton transport mediated by free fatty acids both in model and in mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. As an example of application of the novel mitochondria-targeted antioxidants SkQBerb and SkQPalm to studies of signal transduction, we discuss induction of cell cycle arrest, differentiation, and morphological normalization of some tumor cells. We suggest that production of oxygen radicals in mitochondria is necessary for growth factors-MAP-kinase signaling, which supports proliferation and transformed phenotype.


Subject(s)
Berberine Alkaloids/chemistry , Berberine Alkaloids/metabolism , Berberine/chemistry , Berberine/metabolism , Mitochondria/metabolism , Plastoquinone/chemistry , Plastoquinone/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Berberine/pharmacology , Berberine Alkaloids/pharmacology , Humans , Mitochondria/drug effects , Plastoquinone/pharmacology
12.
Biochemistry (Mosc) ; 73(12): 1273-87, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19120014

ABSTRACT

Synthesis of cationic plastoquinone derivatives (SkQs) containing positively charged phosphonium or rhodamine moieties connected to plastoquinone by decane or pentane linkers is described. It is shown that SkQs (i) easily penetrate through planar, mitochondrial, and outer cell membranes, (ii) at low (nanomolar) concentrations, posses strong antioxidant activity in aqueous solution, BLM, lipid micelles, liposomes, isolated mitochondria, and cells, (iii) at higher (micromolar) concentrations, show pronounced prooxidant activity, the "window" between anti- and prooxidant concentrations being very much larger than for MitoQ, a cationic ubiquinone derivative showing very much lower antioxidant activity and higher prooxidant activity, (iv) are reduced by the respiratory chain to SkQH2, the rate of oxidation of SkQH2 being lower than the rate of SkQ reduction, and (v) prevent oxidation of mitochondrial cardiolipin by OH*. In HeLa cells and human fibroblasts, SkQs operate as powerful inhibitors of the ROS-induced apoptosis and necrosis. For the two most active SkQs, namely SkQ1 and SkQR1, C(1/2) values for inhibition of the H2O2-induced apoptosis in fibroblasts appear to be as low as 1x10(-11) and 8x10(-13) M, respectively. SkQR1, a fluorescent representative of the SkQ family, specifically stains a single type of organelles in the living cell, i.e. energized mitochondria. Such specificity is explained by the fact that it is the mitochondrial matrix that is the only negatively-charged compartment inside the cell. Assuming that the Deltapsi values on the outer cell and inner mitochondrial membranes are about 60 and 180 mV, respectively, and taking into account distribution coefficient of SkQ1 between lipid and water (about 13,000 : 1), the SkQ1 concentration in the inner leaflet of the inner mitochondrial membrane should be 1.3x10(8) times higher than in the extracellular space. This explains the very high efficiency of such compounds in experiments on cell cultures. It is concluded that SkQs are rechargeable, mitochondria-targeted antioxidants of very high efficiency and specificity. Therefore, they might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo.


Subject(s)
Aging , Antioxidants/metabolism , Mitochondria/metabolism , Plastoquinone/metabolism , Antioxidants/chemical synthesis , Antioxidants/chemistry , Apoptosis , Biological Transport , Cells, Cultured , Fibroblasts/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Humans , Mitochondria/chemistry , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Necrosis , Oxidation-Reduction , Plastoquinone/analogs & derivatives , Plastoquinone/chemical synthesis
13.
Biochim Biophys Acta ; 1323(2): 163-72, 1997 Jan 31.
Article in English | MEDLINE | ID: mdl-9042340

ABSTRACT

The transmembrane diffusion of phloretin across planar bilayer lipid membranes is studied under steady-state conditions. Diffusion restrictions and adsorption related effects are measured independently. The adsorption of aligned phloretin dipoles generates a change in the intrinsic dipole potential difference between the inner and outer leaflets of the lipid bilayer. It is monitored by capacitive current measurements carried out with a direct current (dc) bias. The variation of the intramembrane electric field indicates a saturation of the binding sites at the membrane interface. In contrast, pH profile measurements undertaken in the immediate membrane vicinity show a constant membrane permeability. If phloretin binding and transmembrane diffusion are treated as two competitive events rather than subsequent steps in the transport queue the contradictory results become explainable. A mathematical model is developed where it is assumed that diffusing phloretin molecules are randomly oriented, i.e., that they do not contribute to the intrinsic membrane potential. Only the dipoles adsorbing onto the membrane are oriented. Based on these theory the membrane permeability is calculated from the capacitive current data. It is found to agree very well with the permeability deduced from the microelectrode measurements.


Subject(s)
Cell Membrane Permeability , Phloretin/metabolism , Adsorption , Cell Membrane/chemistry , Diffusion , Electric Conductivity , Hydrogen-Ion Concentration , Lipid Bilayers , Membrane Potentials , Microelectrodes , Models, Theoretical , Phloretin/chemistry , Phosphatidylcholines
14.
Biochim Biophys Acta ; 1275(3): 221-6, 1996 Jul 31.
Article in English | MEDLINE | ID: mdl-8695636

ABSTRACT

Photosensitized inactivation of ionic channels formed by gramicidin in the planar bilayer lipid membrane (BLM) has been studied upon exposure of the BLM to single flashes of visible light in the presence of tetrasulphonated aluminium phthalocyanine. The gramicidin photoinactivation is inhibited by the addition of unsaturated phospholipids to the membrane-forming solution as well as by the addition of azide to the bathing solution, consistent with involvement of singlet oxygen. The characteristic time of the photoinactivation (tau) does not change markedly under these conditions. Moreover, tau remains nearly constant upon alteration of the flash energy and the photosensitizer concentration. The value of tau appears to be sensitive to the gramicidin concentration and to the factors affecting the open time of the gramicidin channels, namely the temperature and the solvent used in the membrane-forming solution. The photoinactivation is not observed with covalent gramicidin dimers. The equations derived from the model of Bamberg and Laeuger (J. Membrane Biol. (1973) 11, 177-194), describing the relaxation of the gramicidin-induced conductance after a sudden distortion of the dimer-monomer equilibrium, are shown to explain consistently the time course of the photoinactivation provided that the damage of the gramicidin molecules leads to deviation from the equilibrium.


Subject(s)
Gramicidin/chemistry , Ion Channels/chemistry , Indoles/chemistry , Isoindoles , Lipid Bilayers , Membranes, Artificial , Photolysis
15.
FEBS Lett ; 329(3): 332-5, 1993 Aug 30.
Article in English | MEDLINE | ID: mdl-7689977

ABSTRACT

The effect of phthalocyanines, the potent photodynamic sensitizers, on the electric properties of the bilayer lipid membrane (BLM) is studied. It is shown, that tetrasulfonated, as well as trisulfonated, aluminium phthalocyanine do not alter the conductance of BLM, but elicit certain changes in the boundary potential difference, which points in favor of dye adsorption on BLM. Under the conditions of intense visible light irradiation, the phthalocyanines cause an increase in the conductance, resulting in the irreversible breakdown of BLM, formed from soy bean phosphatidylcholine, but fail to change the conductance of BLM, formed from diphytanoilphosphatidylcholine. The phthalocyanine-sensitized inactivation of gramicidin channels incorporated into BLM is observed under the conditions of weak visible light irradiation using an He-Ne laser. The photodynamic blockage of model ionic channels is considerably suppressed after oxygen depletion. The phenomenon consists of a marked reduction of a number of open channels, probably due to photomodification of tryptophan residues, essential for gramicidin functioning. The mechanism of the channel inactivation, involving the photosensitized reaction of the II type, and the relevance to the interaction of sensitizers with biomembranes, is discussed.


Subject(s)
Gramicidin/metabolism , Indoles/pharmacology , Ion Channels/drug effects , Lipid Bilayers , Photosensitizing Agents/pharmacology , Isoindoles , Light , Oxidation-Reduction , Reactive Oxygen Species
16.
FEBS Lett ; 440(1-2): 235-8, 1998 Nov 27.
Article in English | MEDLINE | ID: mdl-9862462

ABSTRACT

Effect of a cationic polymer, poly(L-lysine), on the kinetic properties of ionic channels formed by neutral gramicidin A (gA) and its negatively charged analogue O-pyromellitylgramicidin (OPg) in a bilayer lipid membrane is studied using a method of sensitized photoinactivation. This newly developed method is based on the analysis of transmembrane current transients induced by a flash in the presence of a photosensitizer. It has been shown previously that the time course of the flash-induced current decrease in most cases follows a single exponential decay with an exponential factor (tau, the characteristic time of photoinactivation) that correlates well with the single-channel lifetime. Addition of polylysine does not affect tau for gA channels, but causes a substantial increase in tau for OPg channels. This effect is reversed by addition of polyacrylic acid. The deceleration of the photoinactivation kinetics is ascribed to electrostatic interaction of polylysine with OPg probably resulting in OPg clustering. The latter can stabilize the channel state by reducing the rotational and lateral mobility of OPg monomers and dimers, and thus increase the single channel lifetime.


Subject(s)
Gramicidin/metabolism , Ion Channels/metabolism , Photosensitizing Agents/pharmacology , Polylysine/pharmacology , Acrylic Resins/pharmacology , Cations/metabolism , Cations/pharmacology , Gramicidin/analogs & derivatives , Kinetics , Light , Lipid Bilayers/chemical synthesis , Lipid Bilayers/metabolism , Lipid Metabolism , Membrane Potentials , Models, Chemical , Polylysine/metabolism , Protein Binding , Temperature
17.
FEBS Lett ; 337(1): 77-80, 1994 Jan 03.
Article in English | MEDLINE | ID: mdl-7506216

ABSTRACT

The present work concerns mechanisms of ionic conductivity of photosynthetic membranes. It is shown that reconstitution of vesicles of photosynthetic membranes (chromatophores) of purple bacteria Rhodospirillum rubrum into a planar bilayer lipid membrane leads to fluctuations of current showing the existence of a channel with a predominant conductance of approximately 230 pS in the presence of 100 mM KCl. Measurements under the conditions of KCl gradient prove that this channel is cation selective (PK/PCl = 7.2). Voltage inactivation of the channel is demonstrated which is prevented by treatment with trypsin.


Subject(s)
Bacterial Chromatophores/ultrastructure , Cell Membrane/physiology , Ion Channels/physiology , Lipid Bilayers , Membrane Fusion , Rhodospirillum rubrum/ultrastructure , Electric Conductivity , Hydrogen-Ion Concentration , Photosynthesis , Potassium Chloride/pharmacology , Trypsin/pharmacology
18.
FEBS Lett ; 505(1): 147-50, 2001 Sep 07.
Article in English | MEDLINE | ID: mdl-11557058

ABSTRACT

The bacterial toxin colicin E1 is known to induce voltage-gated currents across a planar bilayer lipid membrane. In the present study, it is shown that the colicin-induced current decreased substantially upon illumination of the membrane in the presence of the photosensitizer, aluminum phthalocyanine. This effect was almost completely abolished by the singlet oxygen quencher, sodium azide. Using single tryptophan mutants of colicin E1, Trp495 was identified as the amino acid residue responsible for the sensitized photodamage of the colicin channel activity. Thus, the distinct participation of a specific amino acid residue in the sensitized photoinactivation of a defined protein function was demonstrated. It is suggested that Trp495 is critical for the translocation and/or anchoring of the colicin channel domain in the membrane.


Subject(s)
Colicins/chemistry , Lipid Bilayers/chemistry , Photochemistry , Tryptophan/chemistry , Amino Acid Substitution , Colicins/genetics , Indoles , Mutation , Organometallic Compounds , Osmolar Concentration
19.
Photochem Photobiol ; 74(1): 1-7, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11460529

ABSTRACT

Interaction of potent photodynamic agents, sulfonated aluminum phthalocyanines (AlPcSn where n is a number of sulfonic groups), with biological membranes was studied here using model systems: sensitized photoinactivation of gramicidin channels in planar lipid bilayers and adsorption on lipid monolayers. Fluoride anions known to form complexes with aluminum were found to inhibit both the adsorption of aluminum phthalocyanines on lipid monolayers, as measured with a Langmuir trough by surface pressure and surface potential changes, and photodynamic efficacy of the dyes, as studied by gramicidin channel photoinactivation. The similar effects were caused by the alkalinization of the medium. Fluoride anions appeared to be much more effective in the case of AlPcS4 as compared to AlPcS3. The suppression of the photodynamic potency of aluminum phthalocyanines was attributed to desorption of the dyes from lipid bilayers induced by fluoride or hydroxyl ions. With AlPcS4 an enhancement of the dye aggregation leading to a decrease in the sensitizing activity was probably involved in the fluoride effect as revealed by absorption and fluorescence spectral measurements. Capillary electrophoresis was employed to understand the mechanism of the dye desorption. The results of these experiments indicated that the reduction in the membrane affinity was associated with an increase in the negative charge of the dye molecules due to the binding of fluoride or hydroxyl ions.


Subject(s)
Fluorides/pharmacology , Gramicidin/radiation effects , Gramicidin/chemistry , Hydrogen-Ion Concentration , In Vitro Techniques , Indoles/pharmacology , Isoindoles , Lipid Bilayers/chemistry , Photochemistry , Photochemotherapy , Photosensitizing Agents/pharmacology
20.
Z Med Phys ; 11(1): 39-43, 2001.
Article in German | MEDLINE | ID: mdl-11487858

ABSTRACT

The electrostatic equilibrium on the surface of an ion-impermeable membrane was not influenced by ultrasound fields. Only after incorporation of an ion transporter did the ultrasound induce changes of the membrane surface potential. Because the ultrasound effect was completely reversible, measurements of the surface potential of a flat lipid bilayer membrane containing the calcium transporter calcimycin were performed, simultaneously to the ultrasound exposure. The ultrasound-induced volume flow, also called quartz wind, favored the mass transfer through the diffusion boundary close to the membrane, thereby leading to increased calcium concentrations in the immediate vicinity of the membrane. This, in turn, became manifest as a reduction of the negative surface charge density.


Subject(s)
Calcimycin , Lipid Bilayers/radiation effects , Membrane Potentials/radiation effects , Ultrasonics , Calcium , Kinetics , Static Electricity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL