Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Org Chem ; 89(12): 8896-8905, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38856706

ABSTRACT

Endocyclic 1-azaallyl anions engage allyl acetates in a palladium-catalyzed allylation followed by reduction to give unprotected 2-(hetero)aryl-3-allylpiperidines and 2-allyl-3-arylmorpholines, products not easily accessible by other means. The allyl group is then readily transformed into a variety of functional groups. Preliminary studies on the asymmetric variant of the reaction using an enantiomerically pure BI-DIME-type ligand provide the product with moderate enantioselectivity. Computational studies suggest that energy barriers of inner-sphere reductive elimination and outer-sphere nucleophilic substitution are almost the same, which makes both of them possible reaction pathways. In addition, the inner-sphere mechanism displays an enantiodiscriminating C-C bond forming step, while the outer-sphere mechanism is much less selective, which combined to give the asymmetric variant of the reaction moderate enantioselectivity.

2.
Angew Chem Int Ed Engl ; 62(36): e202307638, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37461285

ABSTRACT

Unprotected cis-2,3-diarylpiperidines are synthesized through an unprecedented palladium-catalyzed cross-coupling reaction between aryl halides and elusive endocyclic 1-azaallyl anions. These intermediates are generated in situ by the deprotonation of 2-aryl-1-piperideines, precursors that are readily prepared in two operations from simple piperidines. An asymmetric version of this reaction with (2R, 3R)-iPr-BI-DIME as the ligand provides products in moderate to good yields and enantioselectivities. This study significantly expands the synthetic utility of endocyclic 1-azaallyl anions.

3.
Arch Gynecol Obstet ; 300(4): 829-839, 2019 10.
Article in English | MEDLINE | ID: mdl-31385023

ABSTRACT

PURPOSE: Cancer-related inflammation plays an important role in tumor development and progression. Platelet-lymphocyte ratio (PLR) has been studied as a biomarker for prognosis in gynecologic cancers. But, the results of previous studies were controversial, so we performed this meta-analysis. METHODS: We searched the scientific database of PubMed, Embase, Web of Science, Wanfang, and China National Knowledge Infrastructure (CNKI) using free text and MeSH keywords. Crude HR (hazard ratio) with 95% confidence interval was used to evaluate the risk association between PLR and overall survival (OS) or progression-free survival (PFS) in gynecologic neoplasms. RESULTS: There totally 23 studies, including 6869 patients who were eligible, most of which are published after 2015 or later. PLR greater than the cut-off was associated with poorer survival prognosis in ovarian cancer [OS: HR 1.80 (95% CI 1.37-2.37), p = 0.000; PFS: HR 1.63 (95% CI 1.38-1.91), p = 0.000] and cervical cancer [OS: HR 1.36 (95% CI 1.10-1.68), p = 0.005; PFS: HR 1.40 (95% CI 1.16-1.70), p = 0.002], but not in endometrial cancer [OS: HR 1.95 (95% CI 0.65-5.84), p = 0.234]. CONCLUSIONS: The current meta-analysis revealed that pretreatment PLR was a simple, promising prognostic indicator for OS and PFS in ovarian and cervical cancers. But, its significance of prognosis did not agree with endometrial neoplasm. However, due to the limited number of original studies, future large-scale studies with more well-designed, high-quality studies are still needed.


Subject(s)
Biomarkers/metabolism , Blood Platelets/metabolism , Genital Neoplasms, Female/diagnosis , Lymphocytes/metabolism , Disease Progression , Female , Humans , Male , Prognosis
4.
Nanomaterials (Basel) ; 9(1)2019 Jan 19.
Article in English | MEDLINE | ID: mdl-30669436

ABSTRACT

We describe a method to enhance power conversion efficiency (PCE) of MAPbI3 perovskite solar cell by inserting a FAPbX3 perovskite quantum dots (QD-FAPbX3) layer. The MAPbI3 and QD-FAPbX3 layers were prepared using a simple, rapid spin-coating method in a nitrogen-filled glove box. The solar cell structure consists of ITO/PEDOT:PSS/MAPbI3/QD-FAPbX3/C60/Ag, where PEDOT:PSS, MAPbI3, QD-FAPbX3, and C60 were used as the hole transport layer, light-absorbing layer, absorption enhance layer, and electron transport layer, respectively. The MAPbI3/QD-FAPbX3 solar cells exhibit a PCE of 7.59%, an open circuit voltage (Voc) of 0.9 V, a short-circuit current density (Jsc) of 17.4 mA/cm², and a fill factor (FF) of 48.6%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL