Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Publication year range
1.
Brain Topogr ; 37(3): 475-478, 2024 May.
Article in English | MEDLINE | ID: mdl-37195492

ABSTRACT

Stroke recovery trajectories vary substantially. The need for tracking and prognostic biomarkers in stroke is utmost for prognostic and rehabilitative goals: electroencephalography (EEG) advanced signal analysis may provide useful tools toward this aim. EEG microstates quantify changes in configuration of neuronal generators of short-lasting periods of coordinated synchronized communication within large-scale brain networks: this feature is expected to be impaired in stroke. To characterize the spatio-temporal signatures of EEG microstates in stroke survivors in the acute/subacute phase, EEG microstate analysis was performed in 51 first-ever ischemic stroke survivors [(28-82) years, 24 with right hemisphere (RH) lesion] who underwent a resting-state EEG recording in the acute and subacute phase (from 48 h up to 42 days after the event). Microstates were characterized based on 4 parameters: global explained variance (GEV), mean duration, occurrences per second, and percentage of coverage. Wilcoxon Rank Sum tests were performed to compare features of each microstate across the two groups [i.e., left hemisphere (LH) and right hemisphere (RH) stroke survivors]. The canonical microstate map D, characterized by a mostly frontal topography, displayed greater GEV, occurrence per second, and percentage of coverage in LH than in RH stroke survivors (p < 0.05). The EEG microstate map B, with a left-frontal to right-posterior topography, and F, with an occipital-to-frontal topography, exhibited a greater GEV in RH than in LH stroke survivors (p = 0.015). EEG microstates identified specific topographic maps which characterize stroke survivors' lesioned hemisphere in the acute and early subacute phase. Microstate features offer an additional tool to identify different neural reorganization.


Subject(s)
Electroencephalography , Stroke , Humans , Brain/physiology , Brain Mapping , Prognosis
2.
J Neuroeng Rehabil ; 19(1): 69, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790978

ABSTRACT

BACKGROUND: Brain-computer interfaces (BCIs) are systems capable of translating human brain patterns, measured through electroencephalography (EEG), into commands for an external device. Despite the great advances in machine learning solutions to enhance the performance of BCI decoders, the translational impact of this technology remains elusive. The reliability of BCIs is often unsatisfactory for end-users, limiting their application outside a laboratory environment. METHODS: We present the analysis on the data acquired from an end-user during the preparation for two Cybathlon competitions, where our pilot won the gold medal twice in a row. These data are of particular interest given the mutual learning approach adopted during the longitudinal training phase (8 months), the long training break in between the two events (1 year) and the demanding evaluation scenario. A multifaceted perspective on long-term user learning is proposed: we enriched the information gathered through conventional metrics (e.g., accuracy, application performances) by investigating novel neural correlates of learning in different neural domains. RESULTS: First, we showed that by focusing the training on user learning, the pilot was capable of significantly improving his performance over time even with infrequent decoder re-calibrations. Second, we revealed that the analysis of the within-class modifications of the pilot's neural patterns in the Riemannian domain is more effective in tracking the acquisition and the stabilization of BCI skills, especially after the 1-year break. These results further confirmed the key role of mutual learning in the acquisition of BCI skills, and particularly highlighted the importance of user learning as a key to enhance BCI reliability. CONCLUSION: We firmly believe that our work may open new perspectives and fuel discussions in the BCI field to shift the focus of future research: not only to the machine learning of the decoder, but also in investigating novel training procedures to boost the user learning and the stability of the BCI skills in the long-term. To this end, the analyses and the metrics proposed could be used to monitor the user learning during training and provide a marker guiding the decoder re-calibration to maximize the mutual adaptation of the user to the BCI system.


Subject(s)
Brain-Computer Interfaces , Brain , Electroencephalography/methods , Humans , Machine Learning , Reproducibility of Results
3.
Eur Arch Psychiatry Clin Neurosci ; 271(1): 199-210, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33237361

ABSTRACT

Fibromyalgia syndrome (FMS) is a complex pain disorder, characterized by diffuse pain and cognitive disturbances. Abnormal cortical oscillatory activity may be a promising biomarker, encouraging non-invasive neurostimulation techniques as a treatment. We aimed to modulate abnormal slow cortical oscillations by delivering transcranial alternating current stimulation (tACS) and physiotherapy to reduce pain and cognitive symptoms. This was a double-blinded, randomized, crossover trial conducted between February and September 2018 at the Rehabilitation Unit of a teaching Hospital (NCT03221413). Participants were randomly assigned to tACS or random noise stimulation (RNS), 5 days/week for 2 weeks followed by ad hoc physiotherapy. Clinical and cognitive assessments were performed at T0 (baseline), T1 (after stimulation), T2 (1 month after stimulation). Electroencephalogram (EEG) spectral topographies recorded from 15 participants confirmed slow-rhythm prevalence and provided tACS tailored stimulation parameters and electrode sites. Following tACS, EEG alpha1 ([8-10] Hz) activity increased at T1 (p = 0.024) compared to RNS, pain symptoms assessed by Visual Analog Scale decreased at T1 (T1 vs T0 p = 0.010), self-reported cognitive skills and neuropsychological scores improved both at T1 and T2 (Patient-Reported Outcomes in Cognitive Impairment, T0-T2, p = 0.024; Everyday memory questionnaire, T1 compared to RNS, p = 0.012; Montréal Cognitive Assessment, T0 vs T1, p = 0.048 and T0 vs T2, p = 0.009; Trail Making Test B T0-T2, p = 0.034). Psychopathological scales and other neuropsychological scores (Trail Making Test-A; Total Phonemic Fluency; Hopkins Verbal Learning Test-Revised; Rey-Osterrieth Complex Figure) improved both after tACS and RNS but earlier improvements (T1) were registered only after tACS. These results support tACS coupled with physiotherapy in treating FMS cognitive symptoms, pain and subclinical psychopathology.


Subject(s)
Fibromyalgia/therapy , Physical Therapy Modalities , Transcranial Direct Current Stimulation , Cross-Over Studies , Double-Blind Method , Electroencephalography , Female , Fibromyalgia/physiopathology , Humans , Male , Middle Aged , Pain
4.
Entropy (Basel) ; 23(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064732

ABSTRACT

Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways.

5.
Neuroimage ; 221: 117137, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32652217

ABSTRACT

We present an approach for tracking fast spatiotemporal cortical dynamics in which we combine white matter connectivity data with source-projected electroencephalographic (EEG) data. We employ the mathematical framework of graph signal processing in order to derive the Fourier modes of the brain structural connectivity graph, or "network harmonics". These network harmonics are naturally ordered by smoothness. Smoothness in this context can be understood as the amount of variation along the cortex, leading to a multi-scale representation of brain connectivity. We demonstrate that network harmonics provide a sparse representation of the EEG signal, where, at certain times, the smoothest 15 network harmonics capture 90% of the signal power. This suggests that network harmonics are functionally meaningful, which we demonstrate by using them as a basis for the functional EEG data recorded from a face detection task. There, only 13 network harmonics are sufficient to track the large-scale cortical activity during the processing of the stimuli with a 50 â€‹ms resolution, reproducing well-known activity in the fusiform face area as well as revealing co-activation patterns in somatosensory/motor and frontal cortices that an unconstrained ROI-by-ROI analysis fails to capture. The proposed approach is simple and fast, provides a means of integration of multimodal datasets, and is tied to a theoretical framework in mathematics and physics. Thus, network harmonics point towards promising research directions both theoretically - for example in exploring the relationship between structure and function in the brain - and practically - for example for network tracking in different tasks and groups of individuals, such as patients.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Connectome/methods , Electroencephalography/methods , Facial Recognition/physiology , Nerve Net/anatomy & histology , Nerve Net/physiology , Adult , Cerebral Cortex/diagnostic imaging , Diffusion Tensor Imaging , Female , Humans , Male , Nerve Net/diagnostic imaging , Signal Processing, Computer-Assisted , Young Adult
6.
Entropy (Basel) ; 22(1)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-33285854

ABSTRACT

Previous literature has demonstrated that hypoglycemic events in patients with type 1 diabetes (T1D) are associated with measurable scalp electroencephalography (EEG) changes in power spectral density. In the present study, we used a dataset of 19-channel scalp EEG recordings in 34 patients with T1D who underwent a hyperinsulinemic-hypoglycemic clamp study. We found that hypoglycemic events are also characterized by EEG complexity changes that are quantifiable at the single-channel level through empirical conditional and permutation entropy and fractal dimension indices, i.e., the Higuchi index, residuals, and tortuosity. Moreover, we demonstrated that the EEG complexity indices computed in parallel in more than one channel can be used as the input for a neural network aimed at identifying hypoglycemia and euglycemia. The accuracy was about 90%, suggesting that nonlinear indices applied to EEG signals might be useful in revealing hypoglycemic events from EEG recordings in patients with T1D.

8.
Network ; 27(4): 268-288, 2016.
Article in English | MEDLINE | ID: mdl-27715367

ABSTRACT

The quantitative study of cross-frequency coupling (CFC) is a relevant issue in neuroscience. In local field potentials (LFPs), measured either in the cortex or in the hippocampus, how γ-oscillation amplitude is modulated by changes in θ-rhythms-phase is thought to be important in memory formation. Several methods were proposed to quantify CFC, but reported evidence suggests that experimental parameters affect the results. Therefore, a simulation tool to support the determination of minimal requirements for CFC estimation in order to obtain reliable results is particularly useful. An approach to generate computer-simulated signals having CFC intensity, sweep duration, signal-to-noise ratio (SNR), and multiphasic-coupling tunable by the user has been developed. Its utility has been proved by a study evaluating minimal sweep duration and SNR required for reliable θ-γ CFC estimation from signals simulating LFP measured in the mouse hippocampus. A MATLAB® software was made available to facilitate methodology reproducibility. The analysis of the synthetic LFPs created by the simulator shows how the minimal sweep duration for achieving accurate θ-γ CFC estimates increases as SNR decreases and the number of CFC levels to discriminate increases. In particular, a sufficient reliability in discriminating five different predetermined CFC levels is reached with 35-s sweep with SNR = 20, while SNR = 5 requires at least 140-s sweep.


Subject(s)
Computer Simulation , Hippocampus/physiology , Theta Rhythm , Animals , Memory , Reproducibility of Results , Signal-To-Noise Ratio
9.
PLoS One ; 19(5): e0303086, 2024.
Article in English | MEDLINE | ID: mdl-38776317

ABSTRACT

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a spinal deformity that affects approximately 4% of the world's population. Several hypotheses regarding the etiology of AIS have been investigated. In the last decades, impaired visual-spatial perception, alterations in spatial body orientation and sensory integration deficits have been documented. OBJECTIVE: We aimed to summarize the neurophysiological, balance, and motion evidence related to AIS published in the last fifteen years, between January 2008 and April 2023. Both observational and interventional studies were considered. Only studies using quantitative assessment methods, such as electroencephalography (EEG), electromyography (EMG), magnetic resonance imaging (MRI), somatosensory evoked potentials, force platform, or motion capture, were included. METHODS: 1250 eligible records identified from online database searching were filtered by duplicate removal, title and abstract screening, and qualitative analysis. 61 articles met the inclusion criteria (i.e., Cobb range 10°-35°, age range 10-18 years) and were summarized. RESULTS: We found significant evidence of impaired standing balance in individuals with AIS who greatly rely on visual and proprioceptive information to stay upright. EMG studies frequently reported an increased activity on the convex side of the intrinsic spinae muscles. EEG data show increased delta and theta power, higher alpha peak frequencies, and significant suppression in the alpha and beta bands in subjects with AIS during standing tasks. MRI studies report changes in white matter structures, differences in the vestibular system, and abnormal cortical activations over motor-related areas in subjects with AIS. Bracing appears to be an effective treatment for AIS, leading to improvements in static balance and gait. Methodological issues prevent reliable conclusions about the effects of other treatment options. CONCLUSIONS: This review underscores the importance of quantitative assessment methods to explore the etiology and pathophysiology of AIS. Further research is needed to measure the impact of physical therapy and orthotic treatments on the neurophysiological mechanisms of the disease.


Subject(s)
Electroencephalography , Postural Balance , Scoliosis , Humans , Scoliosis/physiopathology , Scoliosis/therapy , Scoliosis/diagnostic imaging , Adolescent , Postural Balance/physiology , Magnetic Resonance Imaging , Electromyography , Evoked Potentials, Somatosensory/physiology , Child , Female
10.
Eur J Investig Health Psychol Educ ; 13(9): 1909-1919, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37754477

ABSTRACT

Attentional biases toward body-related information increase body dissatisfaction. This can lead at-risk populations to develop psychopathologies. This phenomenon has not been extensively studied in girls affected by idiopathic scoliosis. This work aimed to study the cognitive processes that could contribute to the worsening and maintaining of body image disorders in adolescent idiopathic scoliosis. Twenty-eight girls were recruited and tested for body image dissatisfaction through the Scoliosis-Research-Society-22-revised (SRS-22r) questionnaire. Attentional biases towards disease-related body parts were assessed using a computerized visual match-to-sample task: girls were asked to answer as fast and accurately as possible to find the picture matching a target by pressing a button on a computer keyboard. Reaction times (RTs) and accuracy were collected as outcome variables and compared within and between groups and conditions. Lower scores in SRS-22r self-image, function, and total score were observed in scoliosis compared to the control group (p-value < 0.01). Faster response times (p-value = 0.02) and higher accuracy (p-value = 0.02) were detected in the scoliosis group when processing shoulders and backs (i.e., disease-relevant body parts). A self-body advantage effect emerged in the scoliosis group, showing higher accuracy when answering self-body stimuli compared to others' bodies stimuli (p-value = 0.04). These results provide evidence of body image dissatisfaction and attentional bias towards disease-relevant body parts in girls with scoliosis, requiring clinical attention as highly predisposing to psychopathologies.

11.
Article in English | MEDLINE | ID: mdl-37155402

ABSTRACT

Robot-aided gait training (RAGT) plays a crucial role in providing high-dose and high-intensity task-oriented physical therapy. The human-robot interaction during RAGT remains technically challenging. To achieve this aim, it is necessary to quantify how RAGT impacts brain activity and motor learning. This work quantifies the neuromuscular effect induced by a single RAGT session in healthy middle-aged individuals. Electromyographic (EMG) and motion (IMU) data were recorded and processed during walking trials before and after RAGT. Electroencephalographic (EEG) data were recorded during rest before and after the entire walking session. Linear and nonlinear analyses detected changes in the walking pattern, paralleled by a modulation of cortical activity in the motor, attentive, and visual cortices immediately after RAGT. Increases in alpha and beta EEG spectral power and pattern regularity of the EEG match the increased regularity of body oscillations in the frontal plane, and the loss of alternating muscle activation during the gait cycle, when walking after a RAGT session. These preliminary results improve the understanding of human-machine interaction mechanisms and motor learning and may contribute to more efficient exoskeleton development for assisted walking.


Subject(s)
Exoskeleton Device , Robotics , Middle Aged , Humans , Robotics/methods , Gait/physiology , Walking/physiology , Exercise Therapy/methods , Volunteers
12.
PLoS One ; 18(10): e0292864, 2023.
Article in English | MEDLINE | ID: mdl-37824513

ABSTRACT

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis. AIS is a three-dimensional morphological spinal deformity that affects approximately 1-3% of adolescents. Not all factors related to the etiology of AIS have yet been identified. OBJECTIVE: The primary aim of this experimental protocol is to quantitatively investigate alterations in body representation in AIS, and to quantitatively and objectively track the changes in body sensorimotor representation due to treatment. METHODS: Adolescent girls with a confirmed diagnosis of mild (Cobb angle: 10°-20°) or moderate (21°-35°) scoliosis as well as age and sex-matched controls will be recruited. Participants will be asked to perform a 6-min upright standing and two tasks-named target reaching and forearm bisection task. Eventually, subjects will fill in a self-report questionnaire and a computer-based test to assess body image. This evaluation will be repeated after 6 and 12 months of treatment (i.e., partial or full-time brace and physiotherapy corrective postural exercises). RESULTS: We expect that theta brain rhythm in the central brain areas, alpha brain rhythm lateralization and body representation will change over time depending on treatment and scoliosis progression as a compensatory strategy to overcome a sensorimotor dysfunction. We also expect asymmetric activation of the trunk muscle during reaching tasks and decreased postural stability in AIS. CONCLUSIONS: Quantitatively assess the body representation at different time points during AIS treatment may provide new insights on the pathophysiology and etiology of scoliosis.


Subject(s)
Kyphosis , Scoliosis , Female , Humans , Adolescent , Body Image , Kyphosis/complications , Torso , Exercise Therapy/adverse effects
13.
Netw Neurosci ; 6(2): 401-419, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35733424

ABSTRACT

The dynamic repertoire of functional brain networks is constrained by the underlying topology of structural connections. Despite this intrinsic relationship between structural connectivity (SC) and functional connectivity (FC), integrative and multimodal approaches to combine the two remain limited. Here, we propose a new adaptive filter for estimating dynamic and directed FC using structural connectivity information as priors. We tested the filter in rat epicranial recordings and human event-related EEG data, using SC priors from a meta-analysis of tracer studies and diffusion tensor imaging metrics, respectively. We show that, particularly under conditions of low signal-to-noise ratio, SC priors can help to refine estimates of directed FC, promoting sparse functional networks that combine information from structure and function. In addition, the proposed filter provides intrinsic protection against SC-related false negatives, as well as robustness against false positives, representing a valuable new tool for multimodal imaging in the context of dynamic and directed FC analysis.

14.
Cortex ; 154: 212-230, 2022 09.
Article in English | MEDLINE | ID: mdl-35780756

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 is a worldwide public health issue. Almost 2 years into the pandemic, the persistence of symptoms after the acute phase is a well-recognized phenomenon. We conducted a scoping review to map cognitive domain impairments, their frequency, and associated psycho-affective disorders in people with a previous COVID-19 infection. We searched PubMed/MEDLINE, Scopus, and PsycInfo to identify relevant reports published between December 1, 2019 and February 21, 2022. We followed the PRISMA (Preferred-Reporting-Items-for-Systematic-Reviews-and-Meta-Analyses) extension for scoping review guidelines. Three independent reviewers selected and charted 25 records out of 922. Memory, attention, and executive functions appeared to be the most affected domains. Delayed recall and learning were the most impaired domains of memory. Among the executive functions, abstraction, inhibition, set shifting, and sustained and selective attention were most commonly impaired. Language and visuo-spatial abilities were rarely affected, although this finding might be biased by the scarcity of reports. Neurological and respiratory conditions were often reported in association with cognitive deficits. Results on psycho-affective conditions were inconclusive due to the low frequency of reported data. Admission to an intensive care unit is not related to cognitive deficits. This review highlighted a potential effect of a previous post-COVID-19 infection on a pattern of memory, attention, and executive functions impairments. These findings need to be confirmed on larger cohorts with comprehensive neuropsychological batteries and correlated to neurophysiological and neurobiological substrates.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , Pandemics , SARS-CoV-2
15.
Clin Neurophysiol ; 140: 126-135, 2022 08.
Article in English | MEDLINE | ID: mdl-35763985

ABSTRACT

OBJECTIVE: To disentangle the pathophysiology of cognitive/affective impairment in Coronavirus Disease-2019 (COVID-19), we studied long-term cognitive and affective sequelae and sleep high-density electroencephalography (EEG) at 12-month follow-up in people with a previous hospital admission for acute COVID-19. METHODS: People discharged from an intensive care unit (ICU) and a sub-intensive ward (nonICU) between March and May 2020 were contacted between March and June 2021. Participants underwent cognitive, psychological, and sleep assessment. High-density EEG recording was acquired during a nap. Slow and fast spindles density/amplitude/frequency and source reconstruction in brain gray matter were extracted. The relationship between psychological and cognitive findings was explored with Pearson correlation. RESULTS: We enrolled 33 participants ( 17 nonICU) and 12 controls. We observed a lower Physical Quality of Life index, higher post-traumatic stress disorder (PTSD) score, and a worse executive function performance in nonICU participants. Higher PTSD and Beck Depression Inventory scores correlated with lower executive performance. The same group showed a reorganization of spindle cortical generators. CONCLUSIONS: Our results show executive and psycho-affective deficits and spindle alterations in COVID-19 survivors - especially in nonICU participants - after 12 months from discharge. SIGNIFICANCE: These findings may be suggestive of a crucial contribution of stress experienced during hospital admission on long-term cognitive functioning.


Subject(s)
COVID-19 , Cognition , Electroencephalography , Follow-Up Studies , Humans , Intensive Care Units , Quality of Life , Sleep/physiology
16.
Sci Rep ; 12(1): 17266, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241666

ABSTRACT

Pathophysiology of Adolescent Idiopathic Scoliosis (AIS) is not yet completely understood. This exploratory study aims to investigate two aspects neglected in clinical practice: a defective postural central nervous system control in AIS, and alterations of body schema due to scoliosis spinal deformities. We recorded EEG data and balance data in four different standing positions in 14 adolescents with AIS and in 14 controls. A re-adaptation of the Image Marking Procedure (IMP) assessed body schema alterations on the horizontal (Body Perception Indices (BPIs)) and vertical direction (interacromial and bisiliac axes inclinations). Our results revealed no differences in balance control between groups; higher EEG alpha relative power over sensorimotor areas ipsilateral to the side of the curve and a significant increase of theta relative power localized over the central areas in adolescents with AIS. The difference in BPI shoulder and BPI waist significantly differed between the two groups. The inclinations of the perceived interacromial axes in adolescents with AIS was opposite to the real inclination. Increased theta activity and alpha lateralization observed may be a compensatory strategy to overcome sensorimotor dysfunction mirrored by altered body schema. Scoliosis onset might be preceded by sensorimotor control impairments that last during curve progression.


Subject(s)
Kyphosis , Scoliosis , Sensorimotor Cortex , Adolescent , Humans , Postural Balance/physiology
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4135-4138, 2022 07.
Article in English | MEDLINE | ID: mdl-36086492

ABSTRACT

Stage 2 sleep spindles are considered useful biomarkers for the integrity of the central nervous system and for cognitive and memory skills. We investigated sleep spindles patterns in subjects after 12 months of their hospitalization in the intensive care unit (ICU) of the Padova Teaching Hospital due to COVID-19 between March and November 2020. Before the nap, participants (13 hospitalized in ICU - ICU; 9 hospitalized who received noninvasive ventilation - nonlCU; 9 age and sex-matched healthy controls - CTRL, i.e., not infected by COVID-19) underwent a cognitive and psychological as-sessment. During the nap, high-density electroencephalography (EEG) recordings were acquired. Slow (i.e., [9]-[12] Hz) and fast (i.e.,]12-16] Hz) spindles were automatically detected. Spindle density and spindle source reconstruction in brain grey matter were extracted. The psychological assessment revealed a statistical difference comparing CTRL and nonlCU in Beck Depression Inventory score and in the Physical Quality of Life index (pvalue = 0.03). The cognitive assessment revealed a trend of worsening results in executive functions in COVID-19 survivors. Slow spindle density significantly decreased comparing CTRL to COVID-19 survivors (pvalue= 0.001). There were statistically significant differences in EEG source-waveforms fast spindle amplitude onset among the three groups, mainly between CTRL and nonlCU. Clinical Relevance- Our results suggest that nonlCU were more susceptible to the hospitalization experience than ICU participants with a slight effect on cognitive tests. This impacted the spindle generation revealing a decreased density of slow spindles and affecting the generators of fast spindles in COVID-19 survivors especially in nonlCU.


Subject(s)
COVID-19 , Electroencephalography/methods , Humans , Neuropsychological Tests , Quality of Life , Sleep/physiology
18.
Healthcare (Basel) ; 10(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35206982

ABSTRACT

The main objective of this study is to test the effect of thermal aquatic exercise on motor symptoms and quality of life in people with Parkinson's Disease (PD). Fourteen participants with diagnosis of idiopathic PD completed the whole rehabilitation session and evaluation protocol (Hoehn and Yahr in OFF state: 2-3; Mini Mental State Examination >24; stable pharmacological treatment in the 3 months prior participating in the study). Cognitive and motor status, functional abilities and quality of life were assessed at baseline and after an intensive rehabilitation program in thermal water (12 sessions of 45 min in a 1.4 m depth pool at 32-36 ∘C). The Mini Balance Evaluation System Test (Mini-BESTest) and the PD Quality of Life Questionnaire (PDQ-39) were considered as main outcomes. Secondary assessment measures evaluated motor symptoms and quality of life and psychological well-being. Participants kept good cognitive and functional status after treatment. Balance of all the participants significantly improved (Mini-BESTest: p<0.01). The PDQ-39 significantly improved after rehabilitation (p=0.038), with significance being driven by dimensions strongly related to motor status. Thermal aquatic exercise may represent a promising rehabilitation tool to prevent the impact of motor symptoms on daily-life activities of people with PD. PDQ-39 improvement foreshows good effects of the intervention on quality of life and psychological well-being.

19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7381-7384, 2021 11.
Article in English | MEDLINE | ID: mdl-34892803

ABSTRACT

The body sway during standing displays fractal properties that can possibly describe motion complexity. This study aimed to use the Higuchi's fractal dimension (HFD) and Tortuosity on lower back accelerations recorded on younger (< 35 y) and older adults (> 64 y). One wearable sensor was secured on participants lower back (i.e., fifth lumbar vertebra), which were asked to perform three different postural tasks while standing barefoot as still as possible with and without performing a visual oddball task. Results of HFD and Tortuosity, applied to global anterior-posterior and medial-lateral accelerations of the body, were not dependent from signal amplitude, nor from any parametrization and allowed distinguishing between different postural tasks (p < 0.001). The proposed fractal analysis is promising to describe the complexity of postural control in both younger and older adults, paving the way to a wider use in pathological populations.


Subject(s)
Fractals , Postural Balance , Acceleration , Aged , Humans , Standing Position
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6511-6514, 2021 11.
Article in English | MEDLINE | ID: mdl-34892601

ABSTRACT

Standing and concurrently performing a cognitive task is a very common situation in everyday life. It is associated with a higher risk of falling in the elderly. Here, we aim at evaluating the differences of the P300 evoked potential elicited by a visual oddball paradigm between healthy younger (< 35 y) and older (> 64 y) adults during a simultaneous postural task. We found that P300 latency increases significantly (p < 0.001) when the elderly are engaged in more challenging postural tasks; younger adults show no effect of balance condition. Our results demonstrate that, even if the elderly have the same accuracy in odd stimuli detection as younger adults do, they require a longer processing time for stimulus discrimination. This finding suggests an increased attentional load which engages additional cerebral reserves.


Subject(s)
Evoked Potentials , Postural Balance , Accidental Falls , Adult , Aged , Attention , Humans
SELECTION OF CITATIONS
SEARCH DETAIL