Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMC Microbiol ; 24(1): 280, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068414

ABSTRACT

BACKGROUND: Enterococcus faecium and Staphylococcus aureus are the Gram-positive pathogens of the ESKAPE group, known to represent a great threat to human health due to their high virulence and multiple resistances to antibiotics. Combined, enterococci and S. aureus account for 26% of healthcare-associated infections and are the most common organisms responsible for blood stream infections. We previously showed that the peptidyl-prolyl cis/trans isomerase (PPIase) PpiC of E. faecium elicits the production of specific, opsonic, and protective antibodies that are effective against several strains of E. faecium and E. faecalis. Due to the ubiquitous characteristics of PPIases and their essential function within Gram-positive cells, we hypothesized a potential cross-reactive effect of anti-PpiC antibodies. RESULTS: Opsonophagocytic assays combined with bioinformatics led to the identification of the foldase protein PrsA as a new potential vaccine antigen in S. aureus. We show that PrsA is a stable dimeric protein able to elicit opsonic antibodies against the S. aureus strain MW2, as well as cross-binding and cross-opsonic in several S. aureus, E. faecium and E. faecalis strains. CONCLUSIONS: Given the multiple antibiotic resistances S. aureus and enterococci present, finding preventive strategies is essential to fight those two nosocomial pathogens. The study shows the potential of PrsA as an antigen to use in vaccine formulation against the two dangerous Gram-positive ESKAPE bacteria. Our findings support the idea that PPIases should be further investigated as vaccine targets in the frame of pan-vaccinomics strategy.


Subject(s)
Bacterial Proteins , Enterococcus faecalis , Enterococcus faecium , Peptidylprolyl Isomerase , Staphylococcus aureus , Staphylococcus aureus/immunology , Staphylococcus aureus/genetics , Enterococcus faecium/immunology , Enterococcus faecium/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Peptidylprolyl Isomerase/immunology , Peptidylprolyl Isomerase/genetics , Enterococcus faecalis/immunology , Enterococcus faecalis/genetics , Humans , Gram-Positive Bacterial Infections/prevention & control , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Bacterial Vaccines/immunology , Opsonin Proteins/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Animals , Cross Reactions , Mice , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Phagocytosis , Staphylococcal Infections/prevention & control , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology
2.
Int J Mol Sci ; 21(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085571

ABSTRACT

Advancements in nucleic acid sequencing technology combined with an unprecedented availability of metadata have revealed that 45% of the human genome constituted by transposable elements (TEs) is not only transcriptionally active but also physiologically necessary. Dysregulation of TEs, including human retroviral endogenous sequences (HERVs) has been shown to associate with several neurologic and autoimmune diseases, including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). However, no study has yet addressed whether abnormal expression of these sequences correlates with fibromyalgia (FM), a disease frequently comorbid with ME/CFS. The work presented here shows, for the first time, that, in fact, HERVs of the H, K and W types are overexpressed in immune cells of FM patients with or without comorbid ME/CFS. Patients with increased HERV expression (N = 14) presented increased levels of interferon (INF-ß and INF-γ) but unchanged levels of TNF-α. The findings reported in this study could explain the flu-like symptoms FM patients present with in clinical practice, in the absence of concomitant infections. Future work aimed at identifying specific genomic loci differentially affected in FM and/or ME/CFS is warranted.


Subject(s)
DNA Transposable Elements/genetics , Fibromyalgia/genetics , Fibromyalgia/immunology , Leukocytes/metabolism , Adult , Aged , Cytokines/blood , Endogenous Retroviruses , Fatigue/genetics , Female , Fibromyalgia/blood , Humans , Linear Models , Male , Middle Aged , Models, Biological , RNA, Transfer/genetics , Surveys and Questionnaires
3.
NPJ Vaccines ; 9(1): 151, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155280

ABSTRACT

ESKAPE pathogens are responsible for complicated nosocomial infections worldwide and are often resistant to commonly used antibiotics in clinical settings. Among ESKAPE, vancomycin-resistant Enterococcus faecium (VREfm) and methicillin-resistant Staphylococcus aureus (MRSA) are two important Gram-positive pathogens for which non-antibiotic alternatives are urgently needed. We previously showed that the lipoprotein AdcA of E. faecium elicits opsonic and protective antibodies against E. faecium and E. faecalis. Prompted by our observation, reported here, that AdcA also elicits opsonic antibodies against MRSA and other clinically relevant Gram-positive pathogens, we identified the dominant epitope responsible for AdcA cross-reactive activity and designed a hyper-thermostable and multi-presenting antigen, Sc(EH)3. We demonstrate that antibodies raised against Sc(EH)3 mediate opsonic killing of a wide-spectrum of Gram-positive pathogens, including VREfm and MRSA, and confer protection both in passive and active immunisation models. Our data indicate that Sc(EH)3 is a promising antigen for the development of vaccines against different Gram-positive pathogens.

4.
J Med Chem ; 67(7): 5603-5616, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38513080

ABSTRACT

Vaccines are one of the greatest achievements of modern medicine. Due to their safer profile, the latest investigations usually focus on subunit vaccines. However, the active component often needs to be coupled with an adjuvant to be effective and properly trigger an immune response. We are developing a new synthetic monosaccharide-based TLR4 agonist, such as glucosamine-derived compounds FP18 and FP20, as a potential vaccine adjuvant. In this study, we present a new FP20 derivative, FP20Hmp, with a hydroxylated ester linked to the glucosamine core. We show that the modification introduced improves the activity of the adjuvant and its solubility. This study presents the synthesis of FP20Hmp, its in vitro characterization, and in vivo activity while coupled with the ovalbumin antigen or in formulation with an enterococcal antigen. We show that FP20Hmp enables increased production of antigen-specific antibodies that bind to the whole bacterium.


Subject(s)
Adjuvants, Vaccine , Enterococcus faecium , Toll-Like Receptor 4 , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Vaccines, Subunit , Glucosamine
SELECTION OF CITATIONS
SEARCH DETAIL