Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Drug Metab Dispos ; 41(1): 238-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23118327

ABSTRACT

Compound 1 [(E)-4-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1S,4S)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], a new, potent, selective anaplastic lymphoma kinase (ALK) inhibitor with potential application for the treatment of cancer, was selected as candidate to advance into efficacy studies in mice. However, the compound underwent mouse-specific enzymatic hydrolysis in plasma to a primary amine product (M1). Subsequent i.v. pharmacokinetics studies in mice showed that compound 1 had high clearance (CL) and a short half-life. Oral dose escalation studies in mice indicated that elimination of compound 1 was saturable, with higher doses achieving sufficient exposures above in vitro IC(50). Chemistry efforts to minimize hydrolysis resulted in the discovery of several analogs that were stable in mouse plasma. Three were taken in vivo into mice and showed decreased CL corresponding to increased in vitro stability in plasma. However, the more stable compounds also showed reduced potency against ALK. Kinetic studies in NADPH-fortified and unfortified microsomes and plasma produced submicromolar K(m) values and could help explain the saturation of elimination observed in vivo. Predictions of CL based on kinetics from hydrolysis and NADPH-dependent pathways produced predicted hepatic CL values of 3.8, 3.0, 1.6, and 1.2 l/h⋅kg for compound 1, compound 2 [(E)-3,5-difluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], compound 3 [(E)-3-chloro-5-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], and compound 4 [(E)-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)-3-(trifluoromethyl)benzamide], respectively. The in vivo observed CLs for compounds 1, 2, 3, and 4 were 5.52, 3.51, 2.14, and 2.66 l/h⋅kg, respectively. These results indicate that in vitro metabolism kinetic data, incorporating contributions from both hydrolysis and NADPH-dependent metabolism, could be used to predict the systemic CL of compounds cleared via hydrolytic pathways provided that the in vitro assays thoroughly investigate the processes, including the contribution of other metabolic pathways and the possibility of saturation kinetics.


Subject(s)
Protein Kinase Inhibitors/pharmacokinetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Anaplastic Lymphoma Kinase , Animals , Area Under Curve , Chromatography, Liquid , Hydrolysis , Inhibitory Concentration 50 , Male , Mice , Protein Kinase Inhibitors/blood , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
2.
J Med Chem ; 66(23): 15629-15647, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37967851

ABSTRACT

Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties. This led to the discovery of the potent, selective, orally bioavailable CDK9 inhibitor 28 (KB-0742). Compound 28 exhibits in vivo antitumor activity in mouse xenograft models and a projected human PK profile anticipated to enable efficacious oral dosing. Notably, 28 is currently being investigated in a phase 1/2 dose escalation and expansion clinical trial in patients with relapsed or refractory solid tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Adult , Humans , Animals , Mice , Cyclin-Dependent Kinases , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Apoptosis , Cell Cycle Checkpoints , Disease Models, Animal , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Cyclin-Dependent Kinase 9 , Neoplasms/drug therapy
3.
Mol Cancer ; 11: 70, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22992329

ABSTRACT

BACKGROUND: Non-small-cell lung cancer (NSCLC) is categorized into various histologic subtypes that play an important role in prognosis and treatment outcome. We investigated the antitumor activity of motesanib, a selective antagonist of vascular endothelial growth factor receptors (VEGFR) 1, 2, and 3, platelet-derived growth factor receptor, and Kit, alone and combined with chemotherapy in five human NSCLC xenograft models (A549, Calu-6, NCI-H358, NCI-H1299, and NCI-H1650) containing diverse genetic mutations. RESULTS: Motesanib as a single agent dose-dependently inhibited tumor xenograft growth compared with vehicle in all five of the models (P < 0.05). When combined with cisplatin, motesanib significantly inhibited the growth of Calu-6, NCI-H358, and NCI-H1650 tumor xenografts compared with either single agent alone (P < 0.05). Similarly, the combination of motesanib plus docetaxel significantly inhibited the growth of A549 and Calu-6 tumor xenografts compared with either single agent alone (P < 0.05). In NCI-H358 and NCI-H1650 xenografts, motesanib with and without cisplatin significantly decreased tumor blood vessel area (P < 0.05 vs vehicle) as assessed by anti-CD31 staining. Motesanib alone or in combination with chemotherapy had no effect on tumor cell proliferation in vitro. CONCLUSIONS: These data demonstrate that motesanib had antitumor activity against five different human NSCLC xenograft models containing diverse genetic mutations, and that it had enhanced activity when combined with cisplatin or docetaxel. These effects appeared to be mediated primarily by antiangiogenic mechanisms.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung , Indoles/pharmacology , Lung Neoplasms , Niacinamide/analogs & derivatives , Taxoids/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/administration & dosage , Cisplatin/pharmacology , Docetaxel , Female , Gene Expression , Humans , Indoles/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Mutation , Niacinamide/administration & dosage , Niacinamide/pharmacology , Oligonucleotides , Taxoids/administration & dosage , Tumor Burden/drug effects , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
4.
Cell Chem Biol ; 28(2): 134-147.e14, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33086052

ABSTRACT

Castration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors. Further optimization resulted in KB-0742, an orally bioavailable, selective CDK9 inhibitor with potent anti-tumor activity in CRPC models. In 22Rv1 cells, KB-0742 rapidly downregulates nascent transcription, preferentially depleting short half-life transcripts and AR-driven oncogenic programs. In vivo, oral administration of KB-0742 significantly reduced tumor growth in CRPC, supporting CDK9 inhibition as a promising therapeutic strategy to target AR dependence in CRPC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Kinase Inhibitors/pharmacology , Receptors, Androgen/genetics , Transcription, Genetic/drug effects , Androgen Receptor Antagonists/therapeutic use , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 9/genetics , Gene Expression Regulation, Neoplastic/drug effects , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Kinase Inhibitors/therapeutic use
5.
Clin Cancer Res ; 15(1): 110-8, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19118038

ABSTRACT

PURPOSE: Angiogenesis plays a critical role in breast cancer development and progression. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor that regulates endothelial cell proliferation and survival. We investigated the effects of motesanib, a novel, oral inhibitor of VEGF receptors 1, 2, and 3; platelet-derived growth factor receptor; and Kit receptor, on the growth of xenografts representing various human breast cancer subtypes. EXPERIMENTAL DESIGN: Athymic nude mice were implanted with MCF-7 (luminal) or MDA-MB-231 (mesenchymal) tumor fragments or Cal-51 (mixed/progenitor) tumor cells. Once tumors were established, animals were randomized to receive increasing doses of motesanib alone or motesanib plus cytotoxic chemotherapy (docetaxel, doxorubicin, or tamoxifen). RESULTS: Across all three xenograft models, motesanib treatment resulted in significant dose-dependent reductions in tumor growth, compared with vehicle-treated controls, and in marked reductions in viable tumor fraction and blood vessel density. No significant effect on body weight was observed with compound treatment compared with control-treated animals. Motesanib did not affect the proliferation of tumor cells in vitro. There was a significantly greater reduction in xenograft tumor growth when motesanib was combined with docetaxel (MDA-MB-231 tumors) or with the estrogen receptor modulator tamoxifen (MCF-7 tumors), compared with either treatment alone, but not when combined with doxorubicin (Cal-51 tumors). CONCLUSIONS: Treatment with motesanib alone or in combination with chemotherapy inhibits tumor growth in vivo in various models of human breast cancer. These data suggest that motesanib may have broad utility in the treatment of human breast cancer.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Indoles/therapeutic use , Mammary Neoplasms, Experimental/drug therapy , Niacinamide/analogs & derivatives , Platelet-Derived Growth Factor/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Body Weight/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Humans , Mammary Neoplasms, Experimental/blood supply , Mice , Mice, Nude , Niacinamide/therapeutic use , Oligonucleotides , Random Allocation , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 12(11): 2356-66, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23990115

ABSTRACT

Breast cancer is the most prevalent malignancy affecting women and ranks second in cancer-related deaths, in which death occurs primarily from metastatic disease. Triple-negative breast cancer (TNBC) is a more aggressive and metastatic subtype of breast cancer that is initially responsive to treatment of microtubule-targeting agents (MTA) such as taxanes. Recently, we reported the characterization of AMG 900, an orally bioavailable, potent, and highly selective pan-Aurora kinase inhibitor that is active in multidrug-resistant cell lines. In this report, we investigate the activity of AMG 900 alone and in combination with two distinct classes of MTAs (taxanes and epothilones) in multidrug-resistant TNBC cell lines and xenografts. In TNBC cells, AMG 900 inhibited phosphorylation of histone H3 on Ser(10), a proximal substrate of Aurora-B, and induced polyploidy and apoptosis. Furthermore, AMG 900 potentiated the antiproliferative effects of paclitaxel and ixabepilone at low nanomolar concentrations. In mice, AMG 900 significantly inhibited the growth of MDA-MB-231 (F(11); parental), MDA-MB-231 (F(11)) PTX-r (paclitaxel-resistant variant), and DU4475 xenografts. The combination of AMG 900 with docetaxel enhanced tumor inhibition in MDA-MB-231 (F(11)) xenografts compared with either monotherapy. Notably, combining AMG 900 with ixabepilone resulted in regressions of MDA-MB-231 (F(11)) PTX-r xenografts, in which more than 50% of the tumors failed to regrow 75 days after the cessation of drug treatment. These findings suggest that AMG 900, alone and in combination with MTAs, may be an effective intervention strategy for the treatment of metastatic breast cancer and provide potential therapeutic options for patients with multidrug-resistant tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Neoplasm Metastasis/pathology , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/pathology , Animals , Antineoplastic Combined Chemotherapy Protocols , Aurora Kinases/metabolism , Cell Death/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm , Epothilones/pharmacology , Female , Humans , Mammary Neoplasms, Experimental , Mice , Mice, Nude , Neoplasm Metastasis/drug therapy , Paclitaxel/pharmacology , Phosphorylation/drug effects , Polyploidy , Triple Negative Breast Neoplasms/drug therapy , Tubulin Modulators/pharmacology , Xenograft Model Antitumor Assays
8.
J Med Chem ; 56(24): 10003-15, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24294969

ABSTRACT

Tankyrases (TNKS1 and TNKS2) are proteins in the poly ADP-ribose polymerase (PARP) family. They have been shown to directly bind to axin proteins, which negatively regulate the Wnt pathway by promoting ß-catenin degradation. Inhibition of tankyrases may offer a novel approach to the treatment of APC-mutant colorectal cancer. Hit compound 8 was identified as an inhibitor of tankyrases through a combination of substructure searching of the Amgen compound collection based on a minimal binding pharmacophore hypothesis and high-throughput screening. Herein we report the structure- and property-based optimization of compound 8 leading to the identification of more potent and selective tankyrase inhibitors 22 and 49 with improved pharmacokinetic properties in rodents, which are well suited as tool compounds for further in vivo validation studies.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Tankyrases/antagonists & inhibitors , Administration, Oral , Biological Availability , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tankyrases/metabolism
9.
J Med Chem ; 55(14): 6523-40, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22734674

ABSTRACT

A class of 2-acyliminobenzimidazoles has been developed as potent and selective inhibitors of anaplastic lymphoma kinase (ALK). Structure based design facilitated the rapid development of structure-activity relationships (SAR) and the optimization of kinase selectivity. Introduction of an optimally placed polar substituent was key to solving issues of metabolic stability and led to the development of potent, selective, orally bioavailable ALK inhibitors. Compound 49 achieved substantial tumor regression in an NPM-ALK driven murine tumor xenograft model when dosed qd. Compounds 36 and 49 show favorable potency and PK characteristics in preclinical species indicative of suitability for further development.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Administration, Oral , Anaplastic Lymphoma Kinase , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Biological Availability , Cell Line, Tumor , Drug Stability , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Inhibitory Concentration 50 , Microsomes, Liver/metabolism , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Rats , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL