Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38738607

ABSTRACT

Mn3Sn is an anomalous Hall effect (AHE) antiferromagnet that exhibits the hysteretic AHE in antiferromagnetic (AFM) phase at room temperature. We report that whisker Mn3Sn crystals grown by the flux method exhibit a non-hysteretic AHE at mid-to-low temperatures when the whisker Mn3Sn is surrounded by a thin layer of ferromagnetic Mn2-xSn. These crystals exhibit a hysteretic AHE above 275 K due to the spin alignment of the inverse triangular lattice, which is similar to other crystals. However, upon cooling the crystal, it exhibits a non-hysteretic AHE with a spiral AFM spin structure at 100-200 K. We concluded that the non-hysteretic AHE is induced at the interface of Mn2-xSn/Mn3Sn. We believe that the scalar-spin chirality in the spiral AFM phase of Mn3Sn, modulated by Mn2-xSn through the magnetic proximity effect, produces the AHE. This discovery opens a new avenue for tailoring the AHE by magnetic layers.

2.
Inorg Chem ; 62(35): 14207-14215, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37602725

ABSTRACT

The high-entropy concept was applied to the synthesis of transition-metal antimonides, M1-xPtxSb (M = equimolar Ru, Rh, Pd, and Ir). High-entropy antimonide samples crystallized in a pseudo-hexagonal NiAs-type crystal structure with a P63/mmc space group were successfully synthesized through a conventional solid-state reaction and subsequent quenching. A detailed investigation of the composition and equilibration conditions confirmed the reversible phase transition between a multiphase state at low temperature and an entropy-driven single-phase solid solution at high temperatures. Electrical resistivity, magnetization, and heat capacity measurements of single-phase M1-xPtxSb (x = 0.2) samples revealed a bulk superconducting transition at 2.15(2) K. This study demonstrates that the high-entropy concept provides numerous opportunities for the discovery of new functional materials such as superconductors.

3.
Phys Rev Lett ; 126(12): 125501, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33834834

ABSTRACT

We investigate the intensity interference between pairs of electrons using a spin-polarized electron beam having a high polarization and a narrow energy width. We observe spin-dependent antibunching on the basis of coincident counts of electron pairs performed with a spin-polarized transmission electron microscope, which could control the spin-polarization without any changes in the electron optics. The experimental results show that the time correlation was only affected by the spin polarization, demonstrating that the antibunching is associated with fermionic statistics. The coherent spin-polarized electron beam facilitates the extraction of intrinsic quantum interference.

4.
Opt Express ; 27(15): 20958-20964, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510182

ABSTRACT

Recently, electron beams with structured phase fronts, such as electron vortex beams, have attracted considerable interest. Herein, we present a novel method of fabricating electron phase holograms using a femtosecond laser interference processing. A 35-nm-thick silicon membrane, corresponding to a phase shift of π for 200-keV electrons, was processed using single-shot laser irradiation, whereas processing such thin membranes with a focused ion beam milling technique would be very difficult. This rapid and efficient technique is expected to produce phase diffraction elements for practical applications in a wide range of electron optics fields.

5.
Nano Lett ; 18(9): 5892-5898, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30130410

ABSTRACT

All-solid-state lithium-ion batteries (LIBs) are one of the promising candidates to overcome some issues of conventional LIBs with liquid electrolytes. However, high interfacial resistance of Li-ion transfer at the electrode/solid electrolyte limits their performance. Thus, it is important to clarify interfacial phenomena in a nanometer scale. Here, we present a new method to dynamically observe the Li-ion distribution and Co-ion electronic states in a LiCoO2 cathode of the all-solid-state LIB during charge and discharge reactions using operando scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). By applying a hyperspectral image analysis of non-negative matrix factorization (NMF) to the STEM-EELS, we succeeded in clearly observing the quantitative Li-ion distribution in the operando condition. We found from the operando observation with NMF that the Li ions did not uniformly extract/insert during the charge/discharge reactions, and the activity of the electrochemical reaction depended on the Li-ion concentration in a pristine state. An electrochemically inactive region was formed about 10-20 nm near the LiCoO2/Li2O-Al2O3-TiO2-P2O5-based solid electrolyte interfaces. The STEM-EELS, electron diffraction, and Raman spectroscopy experimentally showed that the inactive region was a mixture of LiCoO2 and Co3O4, leading to the higher interfacial resistance of the Li-ion transfer because Co3O4 does not have pathways of Li-ion diffusion in its crystal.

6.
Angew Chem Int Ed Engl ; 58(16): 5292-5296, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30729632

ABSTRACT

When two different materials come into contact, mobile carriers redistribute at the interface according to their potential difference. Such a charge redistribution is also expected at the interface between electrodes and solid electrolytes. The redistributed ions significantly affect the ion conduction through the interface. Thus, it is essential to determine the actual distribution of the ionic carriers and their potential to improve ion conduction. We succeeded in visualizing the ionic and potential profiles in the charge redistribution layer, or space-charge layer (SCL), formed at the interface between a Cu electrode and Li-conductive solid electrolyte using phase-shifting electron holography and spatially resolved electron energy-loss spectroscopy. These electron microscopy techniques clearly showed the Li-ionic SCL, which dropped by 1.3 V within a distance of 10 nm from the interface. These techniques could contribute to the development of next-generation electrochemical devices.

8.
Microscopy (Oxf) ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049512

ABSTRACT

A new configuration for near-field ptychography using a full-field illumination with a structured electron beam is proposed. A structured electron beam illuminating the entire field of view is scanned over the specimen, and a series of in-line holograms formed in the near-field region below the specimen are collected. The structured beam is generated by a conductive film with random openings, which ensures high stability and coherence of the beam. Observation in the near-field region reduces the beam concentration that occurs in the far-field region, which contributes to accurate recording of the beam intensity with a finite dynamic range of the detectors. The use of full-field illumination prevents the accumulation of errors caused by concatenating the local structures, which is the method used in conventional reconstruction. Since all holograms are obtained from the entire field of view, they have uniform multiplicity in terms of specimen information within the field of view. This contributes to robust and efficient reconstruction for a large field of view. The proposed method was tested using both simulated and experimental holograms. For the simulated holograms, the reconstruction of the specimen transmission function was achieved with an error less than 1/3485 of the wavelength. The method was further validated using experimental holograms obtained from MgO particles. The reconstructed phase transmission function of the specimen was consistent with the specimen structure and was equivalent to a mean inner potential of V on the MgO particle, which is in close agreement with previously reported values.

9.
Microscopy (Oxf) ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822660

ABSTRACT

We have developed a high-speed recordable direct electron detector based on silicon-on-insulator technology. The detector has sixteen analog memories in each pixel to record sixteen images with sub-microsecond temporal resolution. A dedicated data acquisition system has also been developed to display and record the results on a personal computer. The performance of the direct electron detector as an image sensor is evaluated under electron irradiation with an energy of 30 keV in a low-voltage transmission electron microscope equipped with a photocathode electron gun. We demonstrate that the detector can record images at an exposure time of 100 ns and an interval of 900 ns.

10.
Microscopy (Oxf) ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39300960

ABSTRACT

The surface sensitivity of high-resolution secondary electron (SE) imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30-degree. High-resolution SE images of the twisted bilayer MoS2 show a honeycomb structure composed of Mo and S atoms, elucidating the monolayer structure of MoS2. Simultaneously captured annular dark-field scanning transmission electron microscope images from the same region show the projected structure of the two layers. That is, the SE images from the bilayer MoS2 selectively visualize the surface monolayer. It is noted that SE yields from the surface monolayer are approximately 3 times higher than those from the second monolayer, likely attributable to attenuation when SEs emitted from the second layer traverse the surface layer. Mini abstract: The surface sensitivity of atomic resolution secondary electron imaging is examined using MoS2 bilayers, the thinnest system composed of a surface layer and substrate. This study reveals that the secondary electrons visualize the atomic arrangement of the surface monolayer three times more intensely than that of the second layer.

11.
Phys Rev Lett ; 111(7): 074801, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23992070

ABSTRACT

The present study experimentally examines how an electron vortex beam with orbital angular momentum (OAM) undergoes diffraction through a forked grating. The nth-order diffracted electron vortex beam after passing through a forked grating with a Burgers vector of 1 shows an OAM transfer of nℏ. Hence, the diffraction patterns become mirror asymmetric owing to the size difference between the electron beams. Such a forked grating, when used in combination with a pinhole located at the diffraction plane, could act as an analyzer to measure the OAM of input electrons.

12.
Nanotechnology ; 24(6): 065705, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23340321

ABSTRACT

Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10(-5) Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

13.
Microscopy (Oxf) ; 72(5): 425-432, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-36786473

ABSTRACT

We have developed a method to quantitatively measure image distortion, one of the five Seidel aberrations, in transmission electron microscopes without using a standard sample with a known structure. Displacements of small local segments in an image due to image distortion of the intermediate and projection lens system are first measured by comparing images taken before and after a given shift at the first image plane of the objective lens. Then, the sum of the second partial derivatives, or the Laplacian, of the displacement field is measured, and the radial and azimuthal distortion parameters are determined from the measured results. We confirmed using numerically distorted images that the proposed method can measure the image distortion within a relative error ratio of 0.04 for a wide range of distortion amount from 0.1% to 5.0%. The distortion measurement and correction were confirmed to work correctly by using the experimental images, and the iterative measurement and correction procedure could reduce the distortion to a level where the average image displacement was < 0.05 pixels.

14.
Microscopy (Oxf) ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37793048

ABSTRACT

In this study, a new method for the phase retrieval of electron rocking curves observed using convergent-beam electron diffraction, which is applicable to the determination of three-dimensional lattice displacement fields along the beam direction, is proposed. Total variation and total squared variation regularizations are introduced for phase retrieval to suppress overfitting to noise or background signals in the rocking curves and to reproduce the sparse characteristics of displacement fields, which exist only near lattice defects. The results show that the proposed algorithm is effective for rocking curves modulated by the dynamical effect of electron diffraction. The accuracy of phase reconstruction using the proposed method is also discussed. Phase retrieval of the experimental rocking curves obtained from a stacking fault in stainless steel is demonstrated.

15.
Micromachines (Basel) ; 14(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677246

ABSTRACT

In this study, we developed a one-step method for fabricating hydrophobic surfaces on copper (Cu) substrates. Cuprous oxide (Cu2O) with low free energy was successfully formed after low-fluence laser direct irradiation. The formation of Cu2O enhanced the hydrophobicity of the Cu substrate surface, and the contact angle linearly increased with the proportion of Cu2O. The Cu2O fabricated by low-fluence laser treatment showed the same crystal plane orientation as the pristine Cu substrate, implying an epitaxial growth of Cu2O on a Cu substrate.

16.
ACS Omega ; 8(8): 7932-7939, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36872972

ABSTRACT

Molybdenum carbides (MoC and Mo2C) are being reported for various applications, for example, catalysts for sustainable energies, nonlinear materials for laser applications, protective coatings for improving tribological performance, and so on. A one-step method for simultaneously fabricating molybdenum monocarbide (MoC) nanoparticles (NPs) and MoC surfaces with a laser-induced periodic surface structure (LIPSS) was developed by using pulsed laser ablation of a molybdenum (Mo) substrate in hexane. Spherical NPs with an average diameter of 61 nm were observed by scanning electron microscopy. The X-ray diffraction pattern and electron diffraction (ED) pattern results indicate that a face-centered cubic MoC was successfully synthesized for the NPs and on the laser-irradiated area. Notably, the ED pattern suggests that the observed NPs are nanosized single crystals, and a carbon shell was observed on the surface of MoC NPs. The X-ray diffraction pattern of both MoC NPs and LIPSS surface indicates the formation of FCC MoC, agreeing with the results of ED. The results of X-ray photoelectron spectroscopy also showed the bonding energy attributed to Mo-C, and the sp2-sp3 transition was confirmed on the LIPSS surface. The results of Raman spectroscopy have also supported the formation of MoC and amorphous carbon structures. This simple synthesis method for MoC may provide new possibilities for preparing Mo x C-based devices and nanomaterials, which may contribute to the development of catalytic, photonic, and tribological fields.

17.
J Electron Microsc (Tokyo) ; 61(3): 171-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22394576

ABSTRACT

We report the production of electron vortex beams carrying large orbital angular momentum (OAM) using micro-fabricated spiral zone plates. A series of the spherical waves, focussing onto different positions along the propagating direction of the electron beam, were observed. The nth order vortex beam has an OAM n times larger than that of the first-order vortex beam. We observed an electron vortex with an OAM up to in a high-order diffracted wave. A linear dependence of the diameter of the vortex beam on the OAM was observed, being consistent to numerical simulations.

18.
Microscopy (Oxf) ; 71(6): 374-379, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36103367

ABSTRACT

Recent advances in the production of electron vortex beams carrying orbital angular momentum (OAM) offer unique opportunities to explore materials at the nanoscale level. We present a novel method for observing convergent-beam electron diffraction (CBED) patterns by using an electron vortex beam. In a transmission electron microscope, a series of electron vortex beams generated by a forked grating mask located above the specimen illuminate the specimen, and CBED patterns are imaged onto the observation plane of the microscope, selecting one of the electron vortex beams using an aperture located beneath the specimen. We demonstrate that the post-selection method yields the same OAM-resolved CBED patterns as when a single convergent electron beam is injected. The formation mechanism of the post-selected CBED is also discussed. This post-selection method is general and can be applied to electron energy-loss spectroscopy to probe multipole excitations using electron vortex beams.

19.
Microscopy (Oxf) ; 70(3): 255-264, 2021 Jun 06.
Article in English | MEDLINE | ID: mdl-32945839

ABSTRACT

In this study, a noise-reduction technique for series low-dose electron holograms using tensor decomposition is demonstrated through simulation. We treated an entire dataset of the series holograms with Poisson noise as a third-order tensor, which is a stack of 2D holograms. The third-order tensor, which is decomposed into a core tensor and three factor matrices, is approximated as a lower-rank tensor using only noise-free principal components. This technique is applied to simulated holograms by assuming a p-n junction in a semiconductor sample. The peak signal-to-noise ratios of the holograms and the reconstructed phase maps have been improved significantly using tensor decomposition. Moreover, the proposed method was applied to a more practical situation of time-resolved in situ electron holography by considering a nonuniform fringe contrast and fringe drift relative to the sample. The accuracy and precision of the reconstructed phase maps were quantitatively evaluated to demonstrate its effectiveness for in situ experiments and low-dose experiments on beam-sensitive materials.

20.
Microscopy (Oxf) ; 70(3): 321-325, 2021 Jun 06.
Article in English | MEDLINE | ID: mdl-33180139

ABSTRACT

The performance of a direct electron detector using silicon-on-insulator (SOI) technology in a low-voltage transmission electron microscope (LVTEM) is evaluated. The modulation transfer function and detective quantum efficiency of the detector are measured under backside illumination. The SOI-type detector is demonstrated to have high sensitivity and high efficiency for the direct detection of low-energy electrons. The detector is thus considered suitable for low-dose imaging in an LVTEM.

SELECTION OF CITATIONS
SEARCH DETAIL