Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 12: 777858, 2021.
Article in English | MEDLINE | ID: mdl-34956206

ABSTRACT

Background: Developing an understanding of the antibody response, seroprevalence, and seroconversion from natural infection and vaccination against SARS-CoV-2 will give way to a critical epidemiological tool to predict reinfection rates, identify vulnerable communities, and manage future viral outbreaks. To monitor the antibody response on a larger scale, we need an inexpensive, less invasive, and high throughput method. Methods: Here we investigate the use of oral mucosal fluids from individuals recovered from SARS-CoV-2 infection to monitor antibody response and persistence over a 12-month period. For this cohort study, enzyme-linked immunosorbent assays (ELISAs) were used to quantify anti-Spike(S) protein IgG antibodies in participants who had prior SARS-CoV-2 infection and regularly (every 2-4 weeks) provided both serum and oral fluid mucosal fluid samples for longitudinal antibody titer analysis. Results: In our study cohort (n=42) with 17 males and 25 females with an average age of 45.6 +/- 19.3 years, we observed no significant change in oral mucosal fluid IgG levels across the time course of antibody monitoring. In oral mucosal fluids, all the participants who initially had detectable antibodies continued to have detectable antibodies throughout the study. Conclusions: Based on the results presented here, we have shown that oral mucosal fluid-based assays are an effective, less invasive tool for monitoring seroprevalence and seroconversion, which offers an alternative to serum-based assays for understanding the protective ability conferred by the adaptive immune response from viral infection and vaccination against future reinfections.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Saliva/immunology , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mouth Mucosa/immunology , SARS-CoV-2 , Seroconversion , Spike Glycoprotein, Coronavirus/immunology
2.
Sci Rep ; 11(1): 24448, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34961780

ABSTRACT

COVID-19 mRNA vaccines are highly effective at preventing COVID-19. Prior studies have found detectable SARS-CoV-2 IgG antibodies in oral mucosal specimens of participants with history of COVID-19. To assess the development of oral SARS-CoV-2 IgG antibodies among people who received either the Moderna or Pfizer/BioNTech COVID-19 vaccination series, we developed a novel SARS-CoV-2 IgG enzyme-linked immunosorbent assay (ELISA) to quantify the concentrations of oral and nasal mucosal SARS-CoV-2 IgG levels. We enrolled 52 participants who received the Moderna vaccine and 80 participants who received the Pfizer/BioNTech vaccine. Oral mucosal specimens were self-collected by participants prior to or on the day of vaccination, and on days 5, 10, 15, and 20 following each vaccination dose and 30, 60, and 90 days following the second vaccination dose. A subset of the cohort provided additional nasal mucosal specimens at every time point. All participants developed detectable oral mucosal SARS-CoV-2 IgG antibodies by 15 days after the first vaccination dose. There were no significant differences in oral mucosal antibody concentrations once participants were fully vaccinated in the Moderna and Pfizer/BioNTech vaccines. Oral or nasal mucosal antibody testing could be an inexpensive and less invasive alternative to serum antibody testing. Further research is needed to understand the duration of detectable oral or nasal mucosal antibodies and how antibody concentrations change with time.


Subject(s)
Antibodies, Viral/analysis , Immunoglobulin G/analysis , Mouth Mucosa/metabolism , Respiratory System/metabolism , mRNA Vaccines/immunology , Adult , Aged , COVID-19/prevention & control , COVID-19/virology , Female , Health Personnel , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Time Factors , Vaccination , Young Adult , mRNA Vaccines/administration & dosage
3.
Int J Dev Neurosci ; 78: 33-44, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31400491

ABSTRACT

To further reveal the molecular mechanism underlying sexual differentiation of the mouse cerebral cortex and hippocampus, we reanalyzed our previous microarray study with Gene Ontology (GO) term enrichment and found that the GO term "RNA binding" was over-represented among the 89 sexually dimorphic candidate genes. Thus, we selected 16 autosomal genes annotated to the term RNA binding and profiled their mRNA expression in the developing male and female mouse cortex/hippocampus. During the first three weeks after birth, sex differences in mRNA levels of Khdrbs2, Nanos2, Rbm48, and Tdrd3 were observed in the mouse cortex/hippocampus. Of these genes, only the female-biased expression of Rbm48 in neonates was abolished by prenatal exposure to testosterone propionate (TP), while postnatal treatment of TP three weeks after birth increased Rbm48 and Tdrd3 mRNA levels in both sexes. Regardless of sex, the postnatal cortex/hippocampus also showed a marked increase in the content of androgen receptor (Ar) and estrogen receptor ß (Esr2), but a decrease in estrogen receptor α (Esr1) and aromatase (Cyp19a1), which might confer the different responses of Rbm48 to prenatal and postnatal TP. Our results suggest that androgen-regulated, sexually dimorphic Rbm48 expression might present a novel molecular mechanism by which perinatal androgens control development of sexual dimorphism in cortical and hippocampal structure and function.


Subject(s)
Androgens/pharmacology , Cerebral Cortex/drug effects , Gene Expression Regulation/drug effects , Hippocampus/drug effects , RNA-Binding Proteins/metabolism , Testosterone Propionate/pharmacology , Animals , Aromatase/metabolism , Cerebral Cortex/metabolism , Female , Hippocampus/metabolism , Male , Mice , Proteins/genetics , Proteins/metabolism , RNA-Binding Proteins/genetics , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Sex Characteristics , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL