Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Ren Nutr ; 32(5): 542-551, 2022 09.
Article in English | MEDLINE | ID: mdl-34776340

ABSTRACT

OBJECTIVE: This study aims to explore the associations between diet quality, uraemic toxins, and gastrointestinal microbiota in the chronic kidney disease (CKD) population. METHODS: This is a baseline cross-sectional study of adults with CKD participating in a randomized controlled trial of prebiotic and probiotic supplementation. Dietary intake was measured using a seven-day diet history method, administered by a specialist dietitian. Diet quality was assessed using plant-based diet index (PDI) (overall PDI, healthy PDI, and unhealthy PDI), food group analysis, protein intake, fiber intake, and dietary protein-to-fiber ratio. Serum uraemic toxins (free and total; indoxyl sulfate and p-cresyl sulfate) were determined by ultraperformance liquid chromatography. Gastrointestinal microbiota richness, diversity, composition, and functional capacity were analyzed via metagenomic sequencing. RESULTS: Sixty-eight adults [median age: 70 (interquartile range: 58-75) years, 66% male] with an estimated glomerular filtration rate of 34 ± 11 mL/min/1.73 m2 were included, with 40 participants completing the optional fecal substudy. Dietary fiber intake was associated with lower levels of total indoxyl sulfate, whereas the healthy plant-based diet index was associated with lower levels of free p-cresyl sulfate. A higher protein-to-fiber ratio was associated with an increased relative abundance of unclassified members of order Oscillospirales. Intake of vegetables and whole grains was correlated with Subdoligranulum formicile, whereas an unclassified Prevotella species was correlated with potatoes and food items considered discretionary, including sweet drinks, sweet desserts, and animal fats. CONCLUSIONS: Diet quality may influence uraemic toxin generation and gut microbiota diversity, composition, and function in adults with CKD. Well-designed dietary intervention studies targeting the production of uraemic toxins and exploring the impact on gut microbiome are warranted in the CKD population.


Subject(s)
Microbiota , Renal Insufficiency, Chronic , Animals , Cresols , Cross-Sectional Studies , Diet , Dietary Fiber , Humans , Indican , Risk Factors , Sulfates , Uremic Toxins
2.
Nutrients ; 13(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34960037

ABSTRACT

Synbiotics have emerged as a therapeutic strategy for modulating the gut microbiome and targeting novel cardiovascular risk factors, including uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS). This study aims to evaluate the feasibility of a trial of long-term synbiotic supplementation in adults with stage 3-4 chronic kidney disease (CKD). Adult participants with CKD and estimated glomerular filtration rate (eGFR) of 15-60 mL/min/1.73 m2) were recruited between April 2017 and August 2018 to a feasibility, double-blind, placebo-controlled, randomized trial of synbiotic therapy or matched identical placebo for 12 months. The primary outcomes were recruitment and retention rates as well as acceptability of the intervention. Secondary outcomes were treatment adherence and dietary intake. Exploratory outcomes were evaluation of the cardiovascular structure and function, serum IS and PCS, stool microbiota profile, kidney function, blood pressure, and lipid profile. Of 166 potentially eligible patients, 68 (41%) were recruited into the trial (synbiotic n = 35, placebo n = 33). Synbiotic and placebo groups had acceptable and comparable 12-month retention rates (80% versus 85%, respectively, p = 0.60). Synbiotic supplementation altered the stool microbiome with an enrichment of Bifidobacterium and Blautia spp., resulting in a 3.14 mL/min/1.73 m2 (95% confidence interval (CI), -6.23 to -0.06 mL/min/1.73 m2, p < 0.01) reduction in eGFR and a 20.8 µmol/L (95% CI, 2.97 to 38.5 µmol/L, p < 0.01) increase in serum creatinine concentration. No between-group differences were observed in any of the other secondary or exploratory outcomes. Long-term synbiotic supplementation was feasible and acceptable to patients with CKD, and it modified the gastrointestinal microbiome. However, the reduction in kidney function with synbiotics warrants further investigation.


Subject(s)
Gastrointestinal Microbiome/drug effects , Renal Insufficiency/drug therapy , Synbiotics , Aged , Double-Blind Method , Feasibility Studies , Feces/microbiology , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL