Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(43): 10995-10999, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30297407

ABSTRACT

Long-distance migrants, including Pacific salmon (Oncorhynchus spp), can use geomagnetic information to navigate. We tested the hypothesis that a "magnetic map" (i.e., an ability to extract positional information from Earth's magnetic field) also exists in a population of salmon that do not undertake oceanic migrations. This study examined juvenile Atlantic salmon (Salmo salar) originally from a nonanadromous population in Maine transferred ∼60 years ago to a lake in central Oregon. We exposed juveniles to magnetic displacements representative of locations at the latitudinal boundaries of the Pacific salmon oceanic range in the North Pacific and at the periphery of their ancestral oceanic range in the North Atlantic. Orientation differed among the magnetic treatments, indicating that Atlantic salmon detect map information from the geomagnetic field. Despite no recent history of ocean migration, these fish displayed adaptive orientation responses similar to those observed in native Pacific salmonids. These findings indicate that use of map information from the geomagnetic field is a shared ancestral character in the family Salmonidae and is not restricted to populations with anadromous life histories. Lastly, given that Atlantic salmon are transported throughout the world for capture fisheries and aquaculture, such a robust navigational system is of some concern. Escaped individuals may have greater potential to successfully navigate, and thus invade, introduced habitats than previously suspected.


Subject(s)
Salmo salar/physiology , Animal Migration/physiology , Animals , Aquaculture/methods , Magnetics/methods , Maine , Oregon , Pacific Ocean
2.
J Exp Biol ; 223(Pt 10)2020 05 18.
Article in English | MEDLINE | ID: mdl-32291321

ABSTRACT

A variety of animals sense Earth's magnetic field and use it to guide movements over a wide range of spatial scales. Little is known, however, about the mechanisms that underlie magnetic field detection. Among teleost fish, growing evidence suggests that crystals of the mineral magnetite provide the physical basis of the magnetic sense. In this study, juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to a brief but strong magnetic pulse capable of altering the magnetic dipole moment of biogenic magnetite. Orientation behaviour of pulsed fish and untreated control fish was then compared in a magnetic coil system under two conditions: (1) the local magnetic field and (2) a magnetic field that exists near the southern boundary of the natural oceanic range of Chinook salmon. In the local field, no significant difference existed between the orientation of the control and pulsed groups. By contrast, orientation of the two groups was significantly different in the magnetic field from the distant site. These results demonstrate that a magnetic pulse can alter the magnetic orientation behaviour of a fish and are consistent with the hypothesis that salmon have magnetite-based magnetoreception.


Subject(s)
Fishes , Salmon , Animals , Magnetic Fields , Oceans and Seas , Orientation, Spatial
3.
Biol Lett ; 14(2)2018 02.
Article in English | MEDLINE | ID: mdl-29438054

ABSTRACT

Organisms use a variety of environmental cues to orient their movements in three-dimensional space. Here, we show that the upward movement of young Chinook salmon (Oncorhynchus tshawytscha) emerging from gravel nests is influenced by the geomagnetic field. Fish in the ambient geomagnetic field travelled farther upwards through substrate than did fish tested in a field with the vertical component inverted. This suggests that the magnetic field is one of several factors that influences emergence from the gravel, possibly by serving as an orientation cue that helps fish determine which way is up. Moreover, our work indicates that the Oncorhynchus species are sensitive to the magnetic field throughout their life cycles, and that it guides their movements across a range of spatial scales and habitats.


Subject(s)
Behavior, Animal/physiology , Magnetic Phenomena , Salmon/physiology , Animals , Orientation, Spatial/physiology
4.
Curr Biol ; 24(4): 446-50, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24508165

ABSTRACT

Migratory marine animals exploit resources in different oceanic regions at different life stages, but how they navigate to specific oceanic areas is poorly understood. A particular challenge is explaining how juvenile animals with no prior migratory experience are able to locate specific oceanic feeding habitats that are hundreds or thousands of kilometers from their natal sites. Although adults reproducing in the vicinity of favorable ocean currents can facilitate transport of their offspring to these habitats, variation in ocean circulation makes passive transport unreliable, and young animals probably take an active role in controlling their migratory trajectories. Here we experimentally demonstrate that juvenile Chinook salmon (Oncorhynchus tshawytscha) respond to magnetic fields like those at the latitudinal extremes of their ocean range by orienting in directions that would, in each case, lead toward their marine feeding grounds. We further show that fish use the combination of magnetic intensity and inclination angle to assess their geographic location. The "magnetic map" of salmon appears to be inherited, as the fish had no prior migratory experience. These results, paired with findings in sea turtles, imply that magnetic maps are phylogenetically widespread and likely explain the extraordinary navigational abilities evident in many long-distance underwater migrants.


Subject(s)
Animal Migration , Magnetic Phenomena , Salmon/physiology , Aging , Animals , Pacific Ocean
SELECTION OF CITATIONS
SEARCH DETAIL