Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Bioessays ; 45(1): e2200168, 2023 01.
Article in English | MEDLINE | ID: mdl-36385254

ABSTRACT

Small tandem DNA duplications in the range of 15 to 300 base-pairs play an important role in the aetiology of human disease and contribute to genome diversity. Here, we discuss different proposed mechanisms for their occurrence and argue that this type of structural variation mainly results from mutagenic repair of chromosomal breaks. This hypothesis is supported by both bioinformatical analysis of insertions occurring in the genome of different species and disease alleles, as well as by CRISPR/Cas9-based experimental data from different model systems. Recent work points to fill-in synthesis at double-stranded DNA breaks with complementary sequences, regulated by end-joining mechanisms, to account for small tandem duplications. We will review the prevalence of small tandem duplications in the population, and we will speculate on the potential sources of DNA damage that could give rise to this mutational signature. With the development of novel algorithms to analyse sequencing data, small tandem duplications are now more frequently detected in the human genome and identified as oncogenic gain-of-function mutations. Understanding their origin could lead to optimized treatment regimens to prevent therapy-induced activation of oncogenes and might expose novel vulnerabilities in cancer.


Subject(s)
Chromosome Breakage , DNA End-Joining Repair , Genome, Human , Microsatellite Repeats , Humans , CRISPR-Cas Systems
2.
Hum Mol Genet ; 31(5): 748-760, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34559225

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy clinically characterized by weakness in the facial, shoulder girdle and upper a muscles. FSHD is caused by chromatin relaxation of the D4Z4 macrosatellite repeat, mostly by a repeat contraction, facilitating ectopic expression of DUX4 in skeletal muscle. Genetic diagnosis for FSHD is generally based on the sizing and haplotyping of the D4Z4 repeat on chromosome 4 by Southern blotting (SB), molecular combing or single-molecule optical mapping, which is usually straight forward but can be complicated by atypical rearrangements of the D4Z4 repeat. One of these rearrangements is a D4Z4 proximally extended deletion (DPED) allele, where not only the D4Z4 repeat is partially deleted, but also sequences immediately proximal to the repeat are lost, which can impede accurate diagnosis in all genetic methods. Previously, we identified several DPED alleles in FSHD and estimated the size of the proximal deletions by a complex pulsed-field gel electrophoresis and SB strategy. Here, using the next-generation sequencing, we have defined the breakpoint junctions of these DPED alleles at the base pair resolution in 12 FSHD families and 4 control individuals facilitating a PCR-based diagnosis of these DPED alleles. Our resultsshow that half of the DPED alleles are derivates of an ancient founder allele. For some DPED alleles, we found that genetic elements are deleted such as DUX4c, FRG2, DBE-T and myogenic enhancers necessitating re-evaluation of their role in FSHD pathogenesis.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Alleles , Chromatin , Chromosomes, Human, Pair 4/genetics , Founder Effect , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism
3.
Trends Genet ; 35(9): 632-644, 2019 09.
Article in English | MEDLINE | ID: mdl-31296341

ABSTRACT

A recognized source of disease-causing genome alterations is erroneous repair of broken chromosomes, which can be executed by two distinct mechanisms: non-homologous end joining (NHEJ) and the recently discovered polymerase theta-mediated end joining (TMEJ) pathway. While TMEJ has previously been considered to act as an alternative mechanism backing up NHEJ, recent work points to a role for TMEJ in the repair of replication-associated DNA breaks that are excluded from repair through homologous recombination. Because of its mode of action, TMEJ is intrinsically mutagenic and sometimes leaves behind a recognizable genomic scar when joining chromosome break ends (i.e., 'templated insertions'). This review article focuses on the intriguing observation that this polymerase theta signature is frequently observed in disease alleles, arguing for a prominent role of this double-strand break repair pathway in genome diversification and disease-causing spontaneous mutagenesis in humans.


Subject(s)
DNA End-Joining Repair , DNA-Directed DNA Polymerase/metabolism , Animals , DNA Breaks, Double-Stranded , DNA Repair/physiology , DNA-Directed DNA Polymerase/genetics , Evolution, Molecular , Genetic Variation , Humans , Mutation , DNA Polymerase theta
4.
Mol Cell ; 53(6): 1053-66, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24582501

ABSTRACT

Loss of small ubiquitin-like modification (SUMOylation) in mice causes genomic instability due to the missegregation of chromosomes. Currently, little is known about the identity of relevant SUMO target proteins that are involved in this process and about global SUMOylation dynamics during cell-cycle progression. We performed a large-scale quantitative proteomics screen to address this and identified 593 proteins to be SUMO-2 modified, including the Forkhead box transcription factor M1 (FoxM1), a key regulator of cell-cycle progression and chromosome segregation. SUMOylation of FoxM1 peaks during G2 and M phase, when FoxM1 transcriptional activity is required. We found that a SUMOylation-deficient FoxM1 mutant was less active compared to wild-type FoxM1, implying that SUMOylation of the protein enhances its transcriptional activity. Mechanistically, SUMOylation blocks the dimerization of FoxM1, thereby relieving FoxM1 autorepression. Cells deficient for FoxM1 SUMOylation showed increased levels of polyploidy. Our findings contribute to understanding the role of SUMOylation during cell-cycle progression.


Subject(s)
Cell Cycle/genetics , Chromosome Segregation , Forkhead Transcription Factors/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Transcription, Genetic , Amino Acid Sequence , Forkhead Box Protein M1 , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Genomic Instability , HeLa Cells , Humans , Molecular Sequence Data , Protein Multimerization , Signal Transduction , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation
5.
Nucleic Acids Res ; 48(1): 231-248, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31722399

ABSTRACT

Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.


Subject(s)
DNA Helicases/genetics , DNA Repair Enzymes/genetics , DNA Repair , Poly-ADP-Ribose Binding Proteins/genetics , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic , Ubiquitin/genetics , Cell Line, Transformed , Cell Line, Tumor , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/radiation effects , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Gene Expression Regulation , Gene Regulatory Networks , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoblasts/radiation effects , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Transcription Factors/metabolism , Ubiquitin/metabolism , Ubiquitination , Ultraviolet Rays
6.
EMBO J ; 36(24): 3634-3649, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29079701

ABSTRACT

Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non-homologous end-joining (cNHEJ) is largely error-free, alternative end-joining pathways have been described that are intrinsically mutagenic. Which end-joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9-induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta-mediated end-joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end-joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double-strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ-dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes.


Subject(s)
DNA End-Joining Repair/genetics , DNA-Directed DNA Polymerase/metabolism , Embryonic Stem Cells/physiology , Animals , CRISPR-Cas Systems , Cell Line , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , DNA-Directed DNA Polymerase/genetics , Embryonic Stem Cells/cytology , Hypoxanthine Phosphoribosyltransferase , Mice , Models, Genetic , Mutation , DNA Polymerase theta
7.
Mol Cell ; 46(5): 650-61, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22560923

ABSTRACT

TGF-ß members are of key importance during embryogenesis and tissue homeostasis. Smad7 is a potent antagonist of TGF-ß family/Smad-mediated responses, but the regulation of Smad7 activity is not well understood. We identified the RING domain-containing E3 ligase RNF12 as a critical component of TGF-ß signaling. Depletion of RNF12 dramatically reduced TGF-ß/Smad-induced effects in mammalian cells, whereas ectopic expression of RNF12 strongly enhanced these responses. RNF12 specifically binds to Smad7 and induces its polyubiquitination and degradation. Smad7 levels were increased in RNF12-deficient mouse embryonic stem cells, resulting in mitigation of both BMP-mediated repression of neural induction and activin-induced anterior mesoderm formation. RNF12 also antagonized Smad7 during Nodal-dependent and BMP-dependent signaling and morphogenic events in early zebrafish embryos. The gastrulation defects induced by ectopic and depleted Smad7 were rescued in part by RNF12 gain and loss of function, respectively. These findings demonstrate that RNF12 plays a critical role in TGF-ß family signaling.


Subject(s)
Embryo, Nonmammalian/cytology , Embryonic Stem Cells/cytology , Smad7 Protein/metabolism , Ubiquitin-Protein Ligases/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Cell Differentiation/genetics , Embryo, Nonmammalian/metabolism , Embryonic Stem Cells/metabolism , Gastrulation/genetics , Humans , Jurkat Cells , Mice , Proteolysis , Signal Transduction , Transforming Growth Factor beta/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Zebrafish Proteins/genetics
8.
Mol Cell ; 39(4): 641-52, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20797634

ABSTRACT

Reversible protein modification by small ubiquitin-like modifiers (SUMOs) is critical for eukaryotic life. Mass spectrometry-based proteomics has proven effective at identifying hundreds of potential SUMO target proteins. However, direct identification of SUMO acceptor lysines in complex samples by mass spectrometry is still very challenging. We have developed a generic method for the identification of SUMO acceptor lysines in target proteins. We have identified 103 SUMO-2 acceptor lysines in endogenous target proteins. Of these acceptor lysines, 76 are situated in the SUMOylation consensus site [VILMFPC]KxE. Interestingly, eight sites fit the inverted SUMOylation consensus motif [ED]xK[VILFP]. In addition, we found direct mass spectrometric evidence for crosstalk between SUMOylation and phosphorylation with a preferred spacer between the SUMOylated lysine and the phosphorylated serine of four residues. In 16 proteins we identified a hydrophobic cluster SUMOylation motif (HCSM). SUMO conjugation of RanGAP1 and ZBTB1 via HCSMs is remarkably efficient.


Subject(s)
Amino Acid Motifs , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/metabolism , Amino Acid Sequence , GTPase-Activating Proteins/metabolism , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lysine , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Nuclear Proteins/metabolism , Phosphorylation , Proteomics/methods , Ribonucleoproteins, Small Nucleolar/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Tandem Mass Spectrometry , Transfection
9.
J Biol Chem ; 290(25): 15526-15537, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25969536

ABSTRACT

Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR.


Subject(s)
Nuclear Proteins/metabolism , SUMO-1 Protein/metabolism , Thiolester Hydrolases/metabolism , Transcription Factors/metabolism , Ubiquitination/physiology , Ubiquitins/metabolism , Amino Acid Motifs , HeLa Cells , Humans , Nuclear Proteins/genetics , SUMO-1 Protein/genetics , Thiolester Hydrolases/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/genetics
10.
Cell Rep ; 42(2): 112019, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36701230

ABSTRACT

Gene editing through repair of CRISPR-Cas9-induced chromosomal breaks offers a means to correct a wide range of genetic defects. Directing repair to produce desirable outcomes by modulating DNA repair pathways holds considerable promise to increase the efficiency of genome engineering. Here, we show that inhibition of non-homologous end joining (NHEJ) or polymerase theta-mediated end joining (TMEJ) can be exploited to alter the mutational outcomes of CRISPR-Cas9. We show robust inhibition of TMEJ activity at CRISPR-Cas9-induced double-strand breaks (DSBs) using ART558, a potent polymerase theta (PolÏ´) inhibitor. Using targeted sequencing, we show that ART558 suppresses the formation of microhomology-driven deletions in favor of NHEJ-specific outcomes. Conversely, NHEJ deficiency triggers the formation of large kb-sized deletions, which we show are the products of mutagenic TMEJ. Finally, we show that combined chemical inhibition of TMEJ and NHEJ increases the efficiency of homology-driven repair (HDR)-mediated precise gene editing. Our work reports a robust strategy to improve the fidelity and safety of genome engineering.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , DNA Breaks, Double-Stranded , Mutation/genetics , DNA End-Joining Repair
11.
NAR Genom Bioinform ; 4(3): lqac063, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36071722

ABSTRACT

With the emergence of CRISPR-mediated genome editing, there is an increasing desire for easy-to-use tools that can process and overview the spectra of outcomes. Here, we present Sequence Interrogation and Quantification (SIQ), a simple-to-use software tool that enables researchers to retrieve, data-mine and visualize complex sets of targeted sequencing data. SIQ can analyse Sanger sequences but specifically benefit the processing of short- and long-read next-generation sequencing data (e.g. Illumina and PacBio). SIQ facilitates their interpretation by establishing mutational profiles, with a focus on event classification such as deletions, single-nucleotide variations, (templated) insertions and tandem duplications. SIQ results can be directly analysed and visualized via SIQPlotteR, an interactive web tool that we made freely available. Using insightful tornado plot visualizations as outputs, we illustrate that SIQ readily identifies sequence- and repair pathway-specific mutational signatures in a variety of model systems, such as nematodes, plants and mammalian cell culture.

12.
Cells ; 11(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36497055

ABSTRACT

Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).


Subject(s)
DNA Breaks, Double-Stranded , Radiation, Ionizing , G2 Phase Cell Cycle Checkpoints , Reactive Oxygen Species , Signal Transduction
13.
Nat Commun ; 12(1): 4843, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376693

ABSTRACT

Small tandem duplications of DNA occur frequently in the human genome and are implicated in the aetiology of certain human cancers. Recent studies have suggested that DNA double-strand breaks are causal to this mutational class, but the underlying mechanism remains elusive. Here, we identify a crucial role for DNA polymerase α (Pol α)-primase in tandem duplication formation at breaks having complementary 3' ssDNA protrusions. By including so-called primase deserts in CRISPR/Cas9-induced DNA break configurations, we reveal that fill-in synthesis preferentially starts at the 3' tip, and find this activity to be dependent on 53BP1, and the CTC1-STN1-TEN1 (CST) and Shieldin complexes. This axis generates near-blunt ends specifically at DNA breaks with 3' overhangs, which are subsequently repaired by non-homologous end-joining. Our study provides a mechanistic explanation for a mutational signature abundantly observed in the genomes of species and cancer cells.


Subject(s)
DNA Breaks, Double-Stranded , DNA Polymerase I/metabolism , DNA Primase/metabolism , Microsatellite Repeats/genetics , Telomere-Binding Proteins/metabolism , Animals , Base Sequence , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Cells, Cultured , DNA End-Joining Repair , DNA Polymerase I/genetics , DNA Primase/genetics , DNA, Single-Stranded , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Mice , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
14.
Nat Commun ; 12(1): 3636, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140467

ABSTRACT

To identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor. Genetic perturbation screening revealed that defects in the 53BP1/Shieldin complex, which cause PARP inhibitor resistance, result in in vitro and in vivo sensitivity to small molecule Polθ polymerase inhibitors. Mechanistically, ART558 increases biomarkers of single-stranded DNA and synthetic lethality in 53BP1-defective cells whilst the inhibition of DNA nucleases that promote end-resection reversed these effects, implicating these in the synthetic lethal mechanism-of-action. Taken together, these observations describe a drug class that elicits BRCA-gene synthetic lethality and PARP inhibitor synergy, as well as targeting a biomarker-defined mechanism of PARPi-resistance.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Repair/drug effects , DNA-Directed DNA Polymerase/genetics , Nucleic Acid Synthesis Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Synthetic Lethal Mutations/drug effects , Allosteric Regulation , Animals , Apoptosis/drug effects , Apoptosis/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleases/antagonists & inhibitors , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Homologous Recombination/drug effects , Humans , Inhibitory Concentration 50 , Mice , Organoids/drug effects , Ovarian Neoplasms/genetics , Rats , Synthetic Lethal Mutations/genetics , Tumor Suppressor p53-Binding Protein 1/deficiency , Tumor Suppressor p53-Binding Protein 1/metabolism , DNA Polymerase theta
15.
Mol Cell Proteomics ; 7(11): 2107-22, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18565875

ABSTRACT

Many proteins are regulated by a variety of post-translational modifications, and orchestration of these modifications is frequently required for full control of activity. Currently little is known about the combinatorial activity of different post-translational modifications. Here we show that extensive cross-talk exists between sumoylation and ubiquitination. We found that a subset of SUMO-2-conjugated proteins is subsequently ubiquitinated and degraded by the proteasome. In a screen for preferential SUMO-1 or SUMO-2 target proteins, we found that ubiquitin accumulated in purified SUMO-2 conjugates but not in SUMO-1 conjugates. Upon inhibition of the proteasome, the amount of ubiquitin in purified SUMO-2 conjugates increased. In addition, we found that endogenous SUMO-2/3 conjugates, but not endogenous SUMO-1 conjugates, accumulated in response to proteasome inhibitors. Quantitative proteomics experiments enabled the identification of 73 SUMO-2-conjugated proteins that accumulated in cells treated with proteasome inhibitors. Cross-talk between SUMO-2/3 and the ubiquitin-proteasome system controls many target proteins that regulate all aspects of nucleic acid metabolism. Surprisingly the relative abundance of 40 SUMO-2-conjugated proteins was reduced by proteasome inhibitors possibly because of a lack of recycled SUMO-2. We conclude that SUMO-2/3 conjugation and the ubiquitin-proteasome system are tightly integrated and act in a cooperative manner.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin/metabolism , Ubiquitins/metabolism , Amino Acid Sequence , HeLa Cells , Humans , Leupeptins/pharmacology , Models, Biological , Molecular Sequence Data , Protease Inhibitors/pharmacology , Proteasome Inhibitors , Protein Processing, Post-Translational , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Ubiquitination , Ubiquitins/genetics
16.
Circulation ; 114(4): 298-308, 2006 Jul 25.
Article in English | MEDLINE | ID: mdl-16847152

ABSTRACT

BACKGROUND: Hypertrophic growth, a risk factor for mortality in heart disease, is driven by reprogramming of cardiac gene expression. Although the transcription factor myocyte enhancer factor-2 (MEF2) is a common end point for several hypertrophic pathways, its precise cardiac gene targets and function in cardiac remodeling remain to be elucidated. METHODS AND RESULTS: We report the existence of synergistic interactions between the nuclear factor of activated T cells and MEF2 transcription factors triggered by calcineurin signaling. To circumvent the embryonic lethality and mitochondrial deficiency associated with germ-line null mutations for MEF2C and MEF2A respectively, we used conditional transgenesis to express a dominant-negative form of MEF2 in the murine postnatal heart and combined this with magnetic resonance imaging to assess MEF2 transcriptional function in Ca2+/calcineurin-induced cardiac remodeling. Surprisingly, end-diastolic and end-systolic ventricular dimensions and contractility were normalized in the presence of severely hypertrophied left ventricular walls on MEF2 inhibition in calcineurin transgenic mice. In line, we generated lines of transgenic mice expressing MEF2A in the heart, which displayed primarily chamber dilation. Microarray profiling indicated that MEF2 promotes a gene profile functioning primarily to or at the nucleus, cytoskeletal and microtubular networks, and mitochondria. CONCLUSIONS: These findings assign a novel function to MEF2 transcription factors in the postnatal heart, where they activate a genetic program that minimally affects cardiac growth yet promotes chamber dilation, mechanical dysfunction, and dilated cardiomyopathy.


Subject(s)
Calcineurin/pharmacology , Cardiomyopathy, Dilated/etiology , Heart Failure/physiopathology , Myocardial Contraction , Myogenic Regulatory Factors/physiology , Animals , Cardiomegaly/genetics , Cardiomyopathy, Dilated/genetics , Gene Expression Profiling , Heart Failure/chemically induced , MEF2 Transcription Factors , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Myogenic Regulatory Factors/genetics , Signal Transduction
17.
Nat Commun ; 8(1): 66, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28687761

ABSTRACT

Off-target or random integration of exogenous DNA hampers precise genomic engineering and presents a safety risk in clinical gene therapy strategies. Genetic definition of random integration has been lacking for decades. Here, we show that the A-family DNA polymerase θ (Pol θ) promotes random integration, while canonical non-homologous DNA end joining plays a secondary role; cells double deficient for polymerase θ and canonical non-homologous DNA end joining are devoid of any integration events, demonstrating that these two mechanisms define random integration. In contrast, homologous recombination is not reduced in these cells and gene targeting is improved to 100% efficiency. Such complete reversal of integration outcome, from predominately random integration to exclusively gene targeting, provides a rational way forward to improve the efficacy and safety of DNA delivery and gene correction approaches.Random off-target integration events can impair precise gene targeting and poses a safety risk for gene therapy. Here the authors show that repression of polymerase θ and classical non-homologous recombination eliminates random integration.


Subject(s)
DNA End-Joining Repair/genetics , DNA-Directed DNA Polymerase/genetics , Gene Targeting/methods , Animals , Cell Line , DNA Ligase ATP/genetics , DNA-Directed DNA Polymerase/metabolism , Gene Knockout Techniques , Genetic Engineering , Homologous Recombination , Ku Autoantigen/genetics , Mice , DNA Polymerase theta
18.
J Proteomics ; 73(8): 1523-34, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20346425

ABSTRACT

Covalent attachment of Small Ubiquitin-like MOdifiers (SUMOs) to the epsilon-amino group of lysine residues in target proteins regulates many cellular processes. Previously, we have identified the 110kDa U4/U6.U5 tri-snRNP component SART1 as a target protein for SUMO-1 and SUMO-2. SART1 contains lysines on positions 94, 141, 709 and 742 that are situated in tetrameric sumoylation consensus sites. Recombinant SART1 was produced in E. coli, conjugated to SUMO-2 in vitro, digested by trypsin and analysed by MALDI-ToF, MALDI-FT-ICR or nanoLC-iontrap MS/MS. We found that Lys(94) and Lys(141) of SART1 were preferentially conjugated to SUMO-2 monomers and multimers in vitro. In agreement with these results, mutation of Lys(94) and Lys(141), but not Lys(709) and Lys(742), resulted in a reduced sumoylation of SART1 in HeLa cells. A detailed characterization of the four sumoylation sites of SART1 using full-length recombinant SART1 and a peptide sumoylation approach indicated that positively charged amino acids adjacent to the tetrameric sumoylation consensus site enhance the sumoylation of Lys(94). These results show that amino acids surrounding the classic tetrameric SUMO consensus site can regulate sumoylation efficiency and validate the use of an in vitro sumoylation-mass spectrometry approach for the identification of sumoylation sites.


Subject(s)
Antigens, Neoplasm/metabolism , Lysine/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Amino Acid Sequence , Amino Acids/metabolism , HeLa Cells , Humans , Protein Processing, Post-Translational , Proteomics/methods , Ribonucleoprotein, U5 Small Nuclear/metabolism , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Mol Biol Cell ; 20(22): 4804-15, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19793919

ABSTRACT

The cell nucleus harbors a variety of different bodies that vary in number, composition, and size. Although these bodies coordinate important nuclear processes, little is known about how they are formed. Among the most intensively studied bodies in recent years is the PML body. These bodies have been implicated in gene regulation and other cellular processes and are disrupted in cells from patients suffering from acute promyelocytic leukemia. Using live cell imaging microscopy and immunofluorescence, we show in several cell types that PML bodies are formed at telomeric DNA during interphase. Recent studies revealed that both SUMO modification sites and SUMO interaction motifs in the promyelocytic leukemia (PML) protein are required for PML body formation. We show that SMC5, a component of the SUMO ligase MMS21-containing SMC5/6 complex, localizes temporarily at telomeric DNA during PML body formation, suggesting a possible role for SUMO in the formation of PML bodies at telomeric DNA. Our data identify a novel role of telomeric DNA during PML body formation.


Subject(s)
DNA/metabolism , Inclusion Bodies/metabolism , Telomere/genetics , Animals , Cells, Cultured , DNA/genetics , Humans , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/metabolism , Mice , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Telomere/metabolism , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
20.
Mol Cell Proteomics ; 7(1): 132-44, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17938407

ABSTRACT

The length and precise linkage of polyubiquitin chains is important for their biological activity. Although other ubiquitin-like proteins have the potential to form polymeric chains their identification in vivo is challenging and their functional role is unclear. Vertebrates express three small ubiquitin-like modifiers, SUMO-1, SUMO-2, and SUMO-3. Mature SUMO-2 and SUMO-3 are nearly identical and contain an internal consensus site for sumoylation that is missing in SUMO-1. Combining state-of-the-art mass spectrometry with an "in vitro to in vivo" strategy for post-translational modifications, we provide direct evidence that SUMO-1, SUMO-2, and SUMO-3 form mixed chains in cells via the internal consensus sites for sumoylation in SUMO-2 and SUMO-3. In vitro, the chain length of SUMO polymers could be influenced by changing the relative amounts of SUMO-1 and SUMO-2. The developed methodology is generic and can be adapted for the identification of other sumoylation sites in complex samples.


Subject(s)
Polymers/chemistry , Small Ubiquitin-Related Modifier Proteins/chemistry , Amino Acid Sequence , Cell Extracts , Cell Nucleus/metabolism , HeLa Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mass Spectrometry , Molecular Sequence Data , Peptides/chemistry , SUMO-1 Protein/chemistry , SUMO-1 Protein/isolation & purification , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/isolation & purification , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitins/chemistry , Ubiquitins/isolation & purification , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL