Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Mol Pathol ; 132-133: 104867, 2023 08.
Article in English | MEDLINE | ID: mdl-37634863

ABSTRACT

Mast cells (MCs) are tissue-resident innate immune cells that express the high-affinity receptor for immunoglobulin E and are responsible for host defense and an array of diseases related to immune system. We aimed in this study to characterize the pathways and gene signatures of human cord blood-derived MCs (hCBMCs) in comparison to cells originating from CD34- progenitors using next-generation knowledge discovery methods. CD34+ cells were isolated from human umbilical cord blood using magnetic activated cell sorting and differentiated into MCs with rhIL-6 and rhSCF supplementation for 6-8 weeks. The purity of hCBMCs was analyzed by flow cytometry exhibiting the surface markers CD117+CD34-CD45-CD23-FcεR1αdim. Total RNA from hCBMCs and CD34- cells were isolated and hybridized using microarray. Differentially expressed genes were analyzed using iPathway Guide and Pre-Ranked Gene Set Enrichment Analysis. Next-generation knowledge discovery platforms revealed MC-specific gene signatures and molecular pathways enriched in hCBMCs and pertain the immunological response repertoire.


Subject(s)
Fetal Blood , Mast Cells , Humans , Knowledge Discovery , Antigens, CD34/genetics , Cell Differentiation/genetics
2.
Cancer Cell Int ; 22(1): 387, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482387

ABSTRACT

BACKGROUND: Glioblastomas (GBs) are characterised as one of the most aggressive primary central nervous system tumours (CNSTs). Single-cell sequencing analysis identified the presence of a highly heterogeneous population of cancer stem cells (CSCs). The proteins anterior gradient homologue 2 (AGR2) and glucose-regulated protein 78 (GRP78) are known to play critical roles in regulating unfolded protein response (UPR) machinery. The UPR machinery influences cell survival, migration, invasion and drug resistance. Hence, we investigated the role of AGR2 in drug-resistant recurrent glioblastoma cells. METHODS: Immunofluorescence, biological assessments and whole exome sequencing analyses were completed under in situ and in vitro conditions. Cells were treated with CNSTs clinical/preclinical drugs taxol, cisplatin, irinotecan, MCK8866, etoposide, and temozolomide, then resistant cells were analysed for the expression of AGR2. AGR2 was repressed using single and double siRNA transfections and combined with either temozolomide or irinotecan. RESULTS: Genomic and biological characterisations of the AGR2-expressed Jed66_GB and Jed41_GB recurrent glioblastoma tissues and cell lines showed features consistent with glioblastoma. Immunofluorescence data indicated that AGR2 co-localised with the UPR marker GRP78 in both the tissue and their corresponding primary cell lines. AGR2 and GRP78 were highly expressed in glioblastoma CSCs. Following treatment with the aforementioned drugs, all drug-surviving cells showed high expression of AGR2. Prolonged siRNA repression of a particular region in AGR2 exon 2 reduced AGR2 protein expression and led to lower cell densities in both cell lines. Co-treatments using AGR2 exon 2B siRNA in conjunction with temozolomide or irinotecan had partially synergistic effects. The slight reduction of AGR2 expression increased nuclear Caspase-3 activation in both cell lines and caused multinucleation in the Jed66_GB cell line. CONCLUSIONS: AGR2 is highly expressed in UPR-active CSCs and drug-resistant GB cells, and its repression leads to apoptosis, via multiple pathways.

3.
Endocr J ; 68(9): 1067-1079, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-33867398

ABSTRACT

Gestational diabetes mellitus (GDM) affects one in four Saudi women and is associated with high risks of cardiovascular diseases in both the mother and foetus. It is believed that endothelial cells (ECs) dysfunction initiates these diabetic complications. In this study, differences in the transcriptome profiles, cell cycle distribution, and mitochondrial superoxide (MTS) between human umbilical vein endothelial cells (HUVECs) from GDM patients and those from healthy (control) subjects were analysed. Transcriptome profiles were generated using high-density expression microarray. The selected four altered genes were validated using qRT-PCR. MTS and cell cycle were analysed by flow cytometry. A total of 84 altered genes were identified, comprising 52 upregulated and 32 downregulated genes in GDM.HUVECs. Our selection of the four interested altered genes (TGFB2, KITLG, NEK7, and IGFBP5) was based on the functional network analysis, which revealed that these altered genes are belonging to the highest enrichment score associated with cellular function and proliferation; all of which may contribute to ECs dysfunction. The cell cycle revealed an increased percentage of cells in the G2/M phase in GDM.HUVECs, indicating cell cycle arrest. In addition, we found that GDM.HUVECs had increased MTS generation. In conclusion, GDM induces persistent impairment of the biological functions of foetal ECs, as evidenced by analyses of transcriptome profiles, cell cycle, and MTS even after ECs culture in vitro for several passages under normal glucose conditions.


Subject(s)
Cell Cycle/physiology , Diabetes, Gestational/physiopathology , Human Umbilical Vein Endothelial Cells/physiology , Mitochondria/metabolism , Superoxides/metabolism , Transcriptome/physiology , Adult , Cells, Cultured , Female , Fetal Diseases/etiology , Gene Expression , Humans , Pregnancy , Saudi Arabia
4.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261735

ABSTRACT

Several studies have demonstrated that metformin (MTF) acts with variable efficiency as an anticancer agent. The pleiotropic anticancer effects of MTF on cancer cells have not been fully explored yet. By interrogating the Gene Expression Omnibus (GEO) for microarray expression data, we identified eight eligible submissions, representing five different studies, that employed various conditions including different cell lines, MTF concentrations, treatment durations, and cellular components. A compilation of the data sets of 13 different conditions contained 443 repeatedly up- and 387 repeatedly down-regulated genes; the majority of these 830 differentially expressed genes (DEGs) were associated with higher MTF concentrations and longer MTF treatment. The most frequently upregulated genes include DNA damage inducible transcript 4 (DDIT4), chromodomain helicase DNA binding protein 2 (CHD2), endoplasmic reticulum to nucleus signaling 1 (ERN1), and growth differentiation factor 15 (GDF15). The most commonly downregulated genes include arrestin domain containing 4 (ARRDC4), and thioredoxin interacting protein (TXNIP). The most significantly (p-value < 0.05, Fisher's exact test) overrepresented protein class was entitled, nucleic acid binding. Cholesterol biosynthesis and other metabolic pathways were specifically affected by downregulated pathway molecules. In addition, cell cycle pathways were significantly related to the data set. Generated networks were significantly related to, e.g., carbohydrate and lipid metabolism, cancer, cell cycle, and DNA replication, recombination, and repair. A second compilation comprised genes that were at least under one condition up- and in at least another condition down-regulated. Herein, the most frequently deregulated genes include nuclear paraspeckle assembly transcript 1 (NEAT1) and insulin induced gene 1 (INSIG1). The most significantly overrepresented protein classes in this compilation were entitled, nucleic acid binding, ubiquitin-protein ligase, and mRNA processing factor. In conclusion, this study provides a comprehensive list of deregulated genes and biofunctions related to in vitro MTF application and individual responses to different conditions. Biofunctions affected by MTF include, e.g., cholesterol synthesis and other metabolic pathways, cell cycle, and DNA replication, recombination, and repair. These findings can assist in defining the conditions in which MTF exerts additive or synergistic effects in cancer treatment.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Transcriptome/drug effects , Cell Line, Tumor , Humans
5.
Cancer Cell Int ; 18: 77, 2018.
Article in English | MEDLINE | ID: mdl-29849507

ABSTRACT

BACKGROUND: Meningioma cancer stem cells (MCSCs) contribute to tumor aggressiveness and drug resistance. Successful therapies developed for inoperable, recurrent, or metastatic tumors must target these cells and restrict their contribution to tumor progression. Unfortunately, the identity of MCSCs remains elusive, and MSCSs' in situ spatial distribution, heterogeneity, and relationship with tumor grade, remain unclear. METHODS: Seven tumors classified as grade II or grade III, including one case of metastatic grade III, and eight grade I meningioma tumors, were analyzed for combinations of ten stem cell (SC)-related markers using immunofluorescence of consecutive sections. The correlation of expression for all markers were investigated. Three dimensional spatial distribution of markers were qualitatively analyzed using a grid, designed as a repository of information for positive staining. All statistical analyses were completed using Statistical Analysis Software Package. RESULTS: The patterns of expression for SC-related markers were determined in the context of two dimensional distribution and cellular features. All markers could be detected in all tumors, however, Frizzled 9 and GFAP had differential expression in grade II/III compared with grade I meningioma tissues. Correlation analysis showed significant relationships between the expression of GFAP and CD133 as well as SSEA4 and Vimentin. Data from three dimensional analysis showed a complex distribution of SC markers, with increased gene hetero-expression being associated with grade II/III tumors. Sub regions that showed multiple co-staining of markers including CD133, Frizzled 9, GFAP, Vimentin, and SSEA4, but not necessarily the proliferation marker Ki67, were highly associated with grade II/III meningiomas. CONCLUSION: The distribution and level of expression of CSCs markers in meningiomas are variable and show hetero-expression patterns that have a complex spatial nature, particularly in grade II/III meningiomas. Thus, results strongly support the notion of heterogeneous populations of CSCs, even in grade I meningiomas, and call for the use of multiple markers for the accurate identification of individual CSC subgroups. Such identification will lead to practical clinical diagnostic protocols that can quantitate CSCs, predict tumor recurrence, assist in guiding treatment selection for inoperable tumors, and improve follow up of therapy.

6.
Pediatr Cardiol ; 39(5): 924-940, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29541814

ABSTRACT

Congenital heart defects (CHDs) are the most common birth defects in neonatal life. CHDs could be presented as isolated defects or associated with developmental delay (DD) and/or other congenital malformations. A small proportion of cardiac defects are caused by chromosomal abnormalities or single gene defects; however, in a large proportion of cases no genetic diagnosis could be achieved by clinical examination and conventional genetic analysis. The development of genome wide array-Comparative Genomic Hybridization technique (array-CGH) allowed for the detection of cryptic chromosomal imbalances and pathogenic copy number variants (CNVs) not detected by conventional techniques. We investigated 94 patients having CHDs associated with other malformations and/or DD. Clinical examination and Echocardiography was done to all patients to evaluate the type of CHD. To investigate for genome defects we applied high-density array-CGH 2 × 400K (41 patients) and CGH/SNP microarray 2 × 400K (Agilent) for 53 patients. Confirmation of results was done using Fluorescent in situ hybridization (FISH) or qPCR techniques in certain cases. Chromosomal abnormalities such as trisomy 18, 13, 21, microdeletions: del22q11.2, del7q11.23, del18 (p11.32; p11.21), tetrasomy 18p, trisomy 9p, del11q24-q25, add 15p, add(18)(q21.3), and der 9, 15 (q34.2; q11.2) were detected in 21/94 patients (22%) using both conventional cytogenetics methods and array-CGH technique. Cryptic chromosomal anomalies and pathogenic variants were detected in 15/73 (20.5%) cases. CNVs were observed in a large proportion of the studied samples (27/56) (48%). Clustering of variants was observed in chromosome 1p36, 1p21.1, 2q37, 3q29, 5p15, 7p22.3, 8p23, 11p15.5, 14q11.2, 15q11.2, 16p13.3, 16p11.2, 18p11, 21q22, and 22q11.2. CGH/SNP array could detect loss of heterozygosity (LOH) in different chromosomal loci in 10/25 patients. Array-CGH technique allowed for detection of cryptic chromosomal imbalances that could not be detected by conventional cytogenetics methods. CHDs associated with DD/congenital malformations presented with a relatively high rate of cryptic chromosomal abnormalities. Clustering of CNVs in certain genome loci needs further analysis to identify candidate genes that may provide clues for understanding the molecular pathway of cardiac development.


Subject(s)
Chromosome Aberrations , Comparative Genomic Hybridization/methods , DNA Copy Number Variations/genetics , Heart Defects, Congenital/genetics , Adolescent , Child , Child, Preschool , Cytogenetic Analysis/methods , Developmental Disabilities/complications , Echocardiography , Female , Genetic Testing , Humans , In Situ Hybridization, Fluorescence , Infant , Male
7.
Int J Mol Sci ; 19(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241339

ABSTRACT

Metformin (MTF) is a natural compound derived from the legume Galega officinalis. It is the first line antidiabetic drug for type 2 diabetes (T2D) treatment. One of its main antidiabetic effects results from the reduction of hepatic glucose release. First scientific evidence for the anticancer effects of MTF was found in animal research, published in 2001, and some years later a retrospective observational study provided evidence that linked MTF to reduced cancer risk in T2D patients. Its pleiotropic anticancer effects were studied in numerous in vitro and in vivo studies at the molecular and cellular level. Although the majority of these studies demonstrated that MTF is associated with certain anticancer properties, clinical studies and trials provided a mixed view on its beneficial anticancer effects. This review emphasizes the pleiotropic effects of MTF and recent progress made in MTF applications in basic, preclinical, and clinical cancer research.


Subject(s)
Antineoplastic Agents/pharmacology , Metformin/pharmacology , Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Proliferation , Drug Screening Assays, Antitumor , Gluconeogenesis/drug effects , Humans , Metformin/pharmacokinetics , Metformin/therapeutic use , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism
8.
Int J Mol Sci ; 19(1)2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29351188

ABSTRACT

Cardiovascular disease is the leading cause of morbidity/mortality worldwide. Metformin is the first therapy offering cardioprotection in type 2 diabetes and non-diabetic animals with unknown mechanism. We have shown that metformin improves angiogenesis via affecting expression of growth factors/angiogenic inhibitors in CD34⁺ cells under hyperglycemia-hypoxia. Now we studied the direct effect of physiological dose of metformin on human umbilical vein endothelial cells (HUVEC) under conditions mimicking hypoxia-hyperglycemia. HUVEC migration and apoptosis were studied after induction with euglycemia or hyperglycemia and/or CoCl2 induced hypoxia in the presence or absence of metformin. HUVEC mRNA was assayed by whole transcript microarrays. Genes were confirmed by qRT-PCR, proteins by western blot, ELISA or flow cytometry. Metformin promoted HUVEC migration and inhibited apoptosis via upregulation of vascular endothelial growth factor (VEGF) receptors (VEGFR1/R2), fatty acid binding protein 4 (FABP4), ERK/mitogen-activated protein kinase signaling, chemokine ligand 8, lymphocyte antigen 96, Rho kinase 1 (ROCK1), matrix metalloproteinase 16 (MMP16) and tissue factor inhibitor-2 under hyperglycemia-chemical hypoxia. Therefore, metformin's dual effect in hyperglycemia-chemical hypoxia is mediated by direct effect on VEGFR1/R2 leading to activation of cell migration through MMP16 and ROCK1 upregulation, and inhibition of apoptosis by increase in phospho-ERK1/2 and FABP4, components of VEGF signaling cascades.


Subject(s)
Hyperglycemia/drug therapy , Metformin/administration & dosage , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor Receptor-2/genetics , Apoptosis/drug effects , Cell Hypoxia/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Fatty Acid-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hyperglycemia/genetics , Hyperglycemia/pathology , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 16/genetics , Neovascularization, Physiologic/genetics , rho-Associated Kinases/genetics
9.
J Transl Med ; 15(1): 269, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29287594

ABSTRACT

BACKGROUND: Breast cancer brain metastases (BCBM) develop in about 20-30% of breast cancer (BC) patients. BCBM are associated with dismal prognosis not at least due to lack of valuable molecular therapeutic targets. The aim of the study was to identify new molecular biomarkers and targets in BCBM by using complementary state-of-the-art techniques. METHODS: We compared array expression profiles of three BCBM with 16 non-brain metastatic BC and 16 primary brain tumors (prBT) using a false discovery rate (FDR) p < 0.05 and fold change (FC) > 2. Biofunctional analysis was conducted on the differentially expressed probe sets. High-density arrays were employed to detect copy number variations (CNVs) and whole exome sequencing (WES) with paired-end reads of 150 bp was utilized to detect gene mutations in the three BCBM. RESULTS: The top 370 probe sets that were differentially expressed between BCBM and both BC and prBT were in the majority comparably overexpressed in BCBM and included, e.g. the coding genes BCL3, BNIP3, BNIP3P1, BRIP1, CASP14, CDC25A, DMBT1, IDH2, E2F1, MYCN, RAD51, RAD54L, and VDR. A number of small nucleolar RNAs (snoRNAs) were comparably overexpressed in BCBM and included SNORA1, SNORA2A, SNORA9, SNORA10, SNORA22, SNORA24, SNORA30, SNORA37, SNORA38, SNORA52, SNORA71A, SNORA71B, SNORA71C, SNORD13P2, SNORD15A, SNORD34, SNORD35A, SNORD41, SNORD53, and SCARNA22. The top canonical pathway was entitled, role of BRCA1 in DNA damage response. Network analysis revealed key nodes as Akt, ERK1/2, NFkB, and Ras in a predicted activation stage. Downregulated genes in a data set that was shared between BCBM and prBT comprised, e.g. BC cell line invasion markers JUN, MMP3, TFF1, and HAS2. Important cancer genes affected by CNVs included TP53, BRCA1, BRCA2, ERBB2, IDH1, and IDH2. WES detected numerous mutations, some of which affecting BC associated genes as CDH1, HEPACAM, and LOXHD1. CONCLUSIONS: Using complementary molecular genetic techniques, this study identified shared and unshared molecular events in three highly aberrant BCBM emphasizing the challenge to detect new molecular biomarkers and targets with translational implications. Among new findings with the capacity to gain clinical relevance is the detection of overexpressed snoRNAs known to regulate some critical cellular functions as ribosome biogenesis.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Adult , Base Sequence , Cluster Analysis , DNA Copy Number Variations/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Gene Regulatory Networks , Humans , Middle Aged , Mutation/genetics , Principal Component Analysis , Exome Sequencing
10.
Cancer Cell Int ; 17: 72, 2017.
Article in English | MEDLINE | ID: mdl-28736504

ABSTRACT

BACKGROUND: Meningioma tumors arise in arachnoid membranes, and are the most reported central nervous system (CNS) tumors worldwide. Up to 20% of grade I meningioma tumors reoccur and currently predictive cancer stem cells (CSCs) markers for aggressive and drug resistant meningiomas are scarce. METHODS: Meningioma tissues and primary cell lines were investigated using whole transcriptome microarray analysis, immunofluorescence staining of CSCs markers (including CD133, Sox2, Nestin, and Frizzled 9), and drug treatment with cisplatin or etoposide. RESULTS: Unsupervised hierarchical clustering of six meningioma samples separated tissues into two groups. Analysis identified stem cells related pathways to be differential between the two groups and indicated the de-regulation of the stem cell associated genes Reelin (RELN), Calbindin 1 (CALB1) and Anterior Gradient 2 Homolog (AGR2). Immunofluorescence staining for four tissues confirmed stemness variation in situ. Biological characterization of fifteen meningioma primary cell lines concordantly separated cells into two functionally distinct sub-groups. Pleomorphic cell lines (NG type) grew significantly faster than monomorphic cell lines (G type), had a higher number of cells that express Ki67, and were able to migrate aggressively in vitro. In addition, NG type cell lines had a lower expression of nuclear Caspase-3, and had a significantly higher number of CSCs co-positive for CD133+ Sox2+ or AGR2+ BMI1+. Importantly, these cells were more tolerant to cisplatin and etoposide treatment, showed a lower level of nuclear Caspase-3 in treated cells and harbored drug resistant CSCs. CONCLUSION: Collectively, analyses of tissues and primary cell lines revealed stem cell associated genes as potential targets for aggressive and drug resistant meningiomas.

11.
BMC Med Genet ; 17(Suppl 1): 69, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27766963

ABSTRACT

BACKGROUND: Recurrent pregnancy loss (RPL) or recurrent spontaneous abortion is an obstetric complication that affects couples at reproductive age. Previous reports documented a clear relationship between parents with chromosomal abnormalities and both recurrent miscarriages and infertility. However, limited data is available from the Arabian Peninsula which is known by higher rates of consanguineous marriages. The main goal of this study was to determine the prevalence of chromosomal abnormalities and thrombophilic polymorphisms, and to correlate them with RPL and consanguinity in Saudi Arabia. METHODS: Cytogenetic analysis of 171 consent patients with RPL was performed by the standard method of 72-h lymphocyte culture and GTG banding. Allelic polymorphisms of three thrombophilic genes (Factor V Leiden, Prothrombin A20210G, MTHFR C677T) were performed using PCR-RFLP (restriction fragment length polymorphism) and gel electrophoresis. RESULTS: Data analysis revealed that 7.6 % of patients were carrier of numerical or structural chromosomal abnormalities. A high rate of translocations (46 %) was associated to increased incidence of RPL. A significant correlation between consanguineous RPL patients and chromosomal abnormalities (P < 0.05) was found. Both Factor V Leiden and Prothrombin A20210G allelic polymorphisms were significantly associated with a higher prevalence of RPL. CONCLUSIONS: This study demonstrated a strong association between RPL and the prevalence of chromosomal abnormalities and inherited thrombophilia. Given the high rate of consanguineous marriages in the Saudi population, these results underline the importance of systematic cytogenetic investigation and genetic counseling preferably at the premarital stage or at least during early pregnancy phase through preimplantation genetic diagnosis (PGD).


Subject(s)
Abortion, Habitual/etiology , Abortion, Habitual/genetics , Chromosome Aberrations , Consanguinity , Thrombophilia/complications , Thrombophilia/genetics , Adolescent , Adult , Alleles , Factor V/genetics , Female , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Middle Aged , Polymorphism, Genetic , Pregnancy , Prothrombin/genetics , Risk Factors , Saudi Arabia , Thrombophilia/diagnosis , Translocation, Genetic , Young Adult
12.
Cardiovasc Diabetol ; 15: 27, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26861446

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with diabetes mellitus (DM). To identify the most effective treatment for CVD, it is paramount to understand the mechanism behind cardioprotective therapies. Although metformin has been shown to reduce CVD in Type-2 DM clinical trials, the underlying mechanism remains unexplored. CD34(+) cell-based therapies offer a new treatment approach to CVD. The aim of this study was to investigate the effect of metformin on the angiogenic properties of CD34(+) cells under conditions mimicking acute myocardial infarction in diabetes. METHODS: CD34(+) cells were cultured in 5.5 or 16.5 mmol/L glucose ± 0.01 mmol/L metformin and then additionally ± 4 % hypoxia. The paracrine function of CD34(+) cell-derived conditioned medium was assessed by measuring pro-inflammatory cytokines, vascular endothelial growth factor A (VEGFA), and using an in vitro tube formation assay for angiogenesis. Also, mRNA of CD34(+) cells was assayed by microarray and genes of interest were validated by qRT-PCR. RESULTS: Metformin increased in vitro angiogenesis under hyperglycemia-hypoxia and augmented the expression of VEGFA. It also reduced the angiogenic-inhibitors, chemokine (C-X-C motif) ligand 10 (CXCL10) and tissue inhibitor of metalloproteinase 1 (TIMP1) mRNAs, which were upregulated under hyperglycemia-hypoxia. In addition metformin, increased expression of STEAP family member 4 (STEAP4) under euglycemia, indicating an anti-inflammatory effect. CONCLUSIONS: Metformin has a dual effect by simultaneously increasing VEGFA and reducing CXCL10 and TIMP1 in CD34(+) cells in a model of the diabetic state combined with hypoxia. Therefore, these angiogenic inhibitors are promising therapeutic targets for CVD in diabetic patients. Moreover, our data are commensurate with a vascular protective effect of metformin and add to the understanding of underlying mechanisms.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Antigens, CD34/metabolism , Chemokine CXCL10/metabolism , Hyperglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Myocardial Infarction/drug therapy , Neovascularization, Physiologic/drug effects , Stem Cells/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Biomarkers/metabolism , Cell Hypoxia , Cells, Cultured , Chemokine CXCL10/genetics , Dose-Response Relationship, Drug , Down-Regulation , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hyperglycemia/genetics , Hyperglycemia/immunology , Hyperglycemia/metabolism , Hyperglycemia/physiopathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phenotype , Stem Cells/immunology , Stem Cells/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Up-Regulation , Vascular Endothelial Growth Factor A/genetics
13.
BMC Cancer ; 16(Suppl 2): 741, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27766950

ABSTRACT

BACKGROUND: Renal cell carcinoma (RCC) is a seventh ranked malignancy with poor prognosis. RCC is lethal at metastatic stage as it does not respond to conventional systemic treatments, and there is an urgent need to find out promising novel biomarkers for effective treatment. The goal of this study was to evaluate the biomarkers that can be potential therapeutic target and predict effective inhibitors to treat the metastatic stage of RCC. METHODS: We conducted transcriptomic profiling to identify differentially expressed genes associated with RCC. Molecular pathway analysis was done to identify the canonical pathways and their role in RCC. Tissue microarrays (TMA) based immunohistochemical stains were used to validate the protein expression of cyclinD1 (CCND1) and were scored semi-quantitatively from 0 to 3+ on the basis of absence or presence of staining intensity in the tumor cell. Statistical analysis determined the association of CCND1 expression with RCC. Molecular docking analyses were performed to check the potential of two natural inhibitors, rutin and curcumin to bind CCND1. RESULTS: We detected 1490 significantly expressed genes (1034, upregulated and 456, downregulated) in RCC using cutoff fold change 2 and p value < 0.05. Hes-related family bHLH transcription factor with YRPW motif 1 (HEY1), neuropilin 2 (NRP2), lymphoid enhancer-binding factor 1 (LEF1), and histone cluster 1 H3h (HIST1H3H) were most upregulated while aldolase B, fructose-bisphosphate (ALDOB), solute carrier family 12 (SLC12A1), calbindin 1 (CALB1) were the most down regulated genes in our dataset. Functional analysis revealed Wnt/ß-catenin signaling as the significantly activated canonical pathway (z score = 2.53) involving cyclin D1 (CCND1). CCND1 was overexpressed in transcriptomic studies (FC = 2.26, p value = 0.0047) and TMA results also showed the positive expression of CCND1 in 53 % (73/139) of RCC cases. The ligands - rutin and curcumin bounded with CCND1 with good affinity. CONCLUSION: CCND1 was one of the important upregulated gene identified in microarray and validated by TMA. Docking study showed that CCND1 may act as a potential therapeutic target and its inhibition could focus on the migratory, invasive, and metastatic potential of RCC. Further in vivo and in vitro molecular studies are needed to investigate the therapeutic target potential of CCND1 for RCC treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/metabolism , Cyclin D1/metabolism , Gene Expression Profiling/methods , Kidney Neoplasms/metabolism , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Cluster Analysis , Cyclin D1/analysis , Cyclin D1/genetics , Humans , Kidney Neoplasms/genetics , Molecular Docking Simulation , Saudi Arabia , Tissue Array Analysis
14.
BMC Genomics ; 16 Suppl 1: S6, 2015.
Article in English | MEDLINE | ID: mdl-25922907

ABSTRACT

BACKGROUND: Whereas 40 % to 70 % of papillary thyroid carcinomas (PTCs) are characterized by a BRAF mutation (BRAFmut), unified biomarkers for the genetically heterogeneous group of BRAF wild type (BRAFwt) PTCs are not established yet. Using state-of-the-art technology we compared RNA expression profiles between conventional BRAFwt and BRAFmut PTCs. METHODS: Microarrays covering 36,079 reference sequences were used to generate whole transcript expression profiles in 11 BRAFwt PTCs including five micro PTCs, 14 BRAFmut PTCs, and 7 normal thyroid specimens. A p-value with a false discovery rate (FDR) < 0.05 and a fold change > 2 were used as a threshold of significance for differential expression. Network and pathway utilities were employed to interpret significance of expression data. BRAF mutational status was established by direct sequencing the hotspot region of exon 15. RESULTS: We identified 237 annotated genes that were significantly differentially expressed between BRAFwt and BRAFmut PTCs. Of these, 110 genes were down- and 127 were upregulated in BRAFwt compared to BRAFmut PTCs. A number of molecules involved in thyroid hormone metabolism including thyroid peroxidase (TPO) were differentially expressed between both groups. Among cancer-associated molecules were ERBB3 that was downregulated and ERBB4 that was upregulated in BRAFwt PTCs. Two microRNAs were significantly differentially expressed of which miR492 bears predicted functions relevant to thyroid-specific molecules. The protein kinase A (PKA) and the G protein-coupled receptor pathways were identified as significantly related signaling cascades to the gene set of 237 genes. Furthermore, a network of interacting molecules was predicted on basis of the differentially expressed gene set. CONCLUSIONS: The expression study focusing on affected genes that are differentially expressed between BRAFwt and BRAFmut conventional PTCs identified a number of molecules which are connected in a network and affect important canonical pathways. The identified gene set adds to our understanding of the tumor biology of BRAFwt and BRAFmut PTCs and contains genes/biomarkers of interest.


Subject(s)
Carcinoma/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , Adult , Carcinoma/pathology , Carcinoma, Papillary , Cluster Analysis , DNA Mutational Analysis , Demography , Female , Gene Regulatory Networks , Humans , Male , Middle Aged , Principal Component Analysis , Receptors, G-Protein-Coupled/genetics , Thyroid Cancer, Papillary , Thyroid Neoplasms/pathology
15.
BMC Genomics ; 16 Suppl 1: S7, 2015.
Article in English | MEDLINE | ID: mdl-25923053

ABSTRACT

BACKGROUND: Follicular variant of papillary thyroid carcinoma (FVPTC) and follicular adenoma (FA) are histologically closely related tumors and differential diagnosis remains challenging. RNA expression profiling is an established method to unravel molecular mechanisms underlying the histopathology of diseases. METHODS: BRAF mutational status was established by direct sequencing the hotspot region of exon 15 in six FVPTCs and seven FAs. Whole-transcript arrays were employed to generate expression profiles in six FVPTCs, seven FAs and seven normal thyroid tissue samples. The threshold of significance for differential expression on the gene and exon level was a p-value with a false discovery rate (FDR) < 0.05 and a fold change cutoff > 2. Two dimensional average linkage hierarchical clustering was generated using differentially expressed genes. Network, pathway, and alternative splicing utilities were employed to interpret significance of expression data on the gene and exon level. RESULTS: Expression profiling in FVPTCs and FAs, all of which were negative for a BRAF mutation, revealed 55 transcripts that were significantly differentially expressed, 40 of which were upregulated and 15 downregulated in FVPTCs vs. FAs. Amongst the most significantly upregulated genes in FVPTCs were GABA B receptor, 2 (GABBR2), neuronal cell adhesion molecule (NRCAM), extracellular matrix protein 1 (ECM1), heparan sulfate 6-O-sulfotransferase 2 (HS6ST2), and retinoid X receptor, gamma (RXRG). The most significantly downregulated genes in FVPTCs included interaction protein for cytohesin exchange factors 1 (IPCEF1), G protein-coupled receptor 155 (GPR155), Purkinje cell protein 4 (PCP4), chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1), and glutamate receptor interacting protein 1 (GRIP1). Alternative splicing analysis detected 87 genes, 52 of which were also included in the list of 55 differentially expressed genes. Network analysis demonstrated multiple interactions for a number of differentially expressed molecules including vitamin D (1,25- dihydroxyvitamin D3) receptor (VDR), SMAD family member 9 (SMAD9), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and RXRG. CONCLUSIONS: This is one of the first studies using whole-transcript expression arrays to compare expression profiles between FVPTCs and FAs. A set of differentially expressed genes has been identified that contains valuable candidate genes to differentiate both histopathologically related tumor types on the molecular level.


Subject(s)
Adenoma/genetics , Carcinoma/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Oligonucleotide Array Sequence Analysis , Thyroid Gland/pathology , Thyroid Neoplasms/genetics , Carcinoma, Papillary , Cluster Analysis , Exons/genetics , Gene Regulatory Networks , Genes, Neoplasm , Humans , Principal Component Analysis , RNA Splicing/genetics , Thyroid Cancer, Papillary
16.
BMC Genomics ; 16 Suppl 1: S11, 2015.
Article in English | MEDLINE | ID: mdl-25923423

ABSTRACT

BACKGROUND: Breast cancer incidence rates are increasing at an alarming rate among Saudi Arabian females. Most molecular genetic discoveries on breast cancer and other cancers have arisen from studies examining European and American patients. However, possibility of specific changes in molecular signature among cancer patients of diverse ethnic groups remains largely unexplored. We performed transcriptomic profiling of surgically-resected breast tumors from 45 patients based in the Western region of Saudi Arabia using Affymetrix Gene 1.0 ST chip. Pathway and biological function-based clustering was apparent across the tissue samples. RESULTS: Pathway analysis revealed canonical pathways that had not been previously implicated in breast cancer. Biological network analysis of differentially regulated genes revealed that Fatty acid binding protein 4, adipocyte (FABP4), adiponectin (ADIPOQ), and retinol binding protein 4 (RBP4) were most down regulated genes, sharing strong connection with the other molecules of lipid metabolism pathway. The marked biological difference in the signatures uncovered between the USA and Saudi samples underpins the importance of this study. Connectivity Map identified compounds that could reverse an observed gene expression signature CONCLUSIONS: This study describes, to our knowledge, the first genome-wide profiling of breast cancer from Saudi ethnic females. We demonstrate the involvement of the lipid metabolism pathway in the pathogenesis of breast cancer from this region. This finding also highlights the need for strategies to curb the increasing rates of incidence of this disease by educating the public about life-style risk factors such as unhealthy diet and obesity.


Subject(s)
Adiponectin/genetics , Breast Neoplasms/genetics , Fatty Acid-Binding Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Lipid Metabolism/genetics , Adiponectin/metabolism , Breast Neoplasms/therapy , Databases, Genetic , Fatty Acid-Binding Proteins/metabolism , Female , Genes, Neoplasm , Humans , Middle Aged , Principal Component Analysis , Saudi Arabia , Signal Transduction/genetics
17.
Immunol Lett ; 269: 106908, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151731

ABSTRACT

Mast cells are multifaceted cells localized in tissues and possess various surface receptors that allow them to respond to inner and external threat signals. Interleukin-33 (IL-33) is a cytokine released by structural cells in response to parasitic infections, mechanical damage, and cell death. IL-33 can activate mast cells, causing them to release an array of mediators. This study aimed to identify the different cytokines released by human cord blood-derived mast cells (hCBMCs) in response to acute and prolonged stimulation with IL-33. For this purpose, a hCBMC model was established and stimulated with 10 ng and 20 ng of recombinant human IL-33 (rhIL-33) for 6 h and 24 h. Total RNA was hybridized using a high-density oligonucleotide microarray. A multiplex assay was performed to assess the released cytokines. Acute exposure to rhIL-33 increased the expression of IL-1α, IL-1ß, IL-6, and IL-13, whereas prolonged exposure increased the expression of IL-5 and IL-10, and cytokines were detected in the culture supernatant. WebGestalt analysis revealed that rhIL-33 induces pathways and biological processes related to the immune system and the acute inflammatory response. This study demonstrates that rhIL-33 can activate hCBMCs to release pro- and anti-inflammatory cytokines, eliciting distinct acute and prolonged responses unique to hCBMCs.


Subject(s)
Cytokines , Fetal Blood , Interleukin-33 , Mast Cells , Humans , Interleukin-33/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Fetal Blood/cytology , Cytokines/metabolism , Cells, Cultured , Recombinant Proteins/pharmacology , Gene Expression Profiling
18.
Children (Basel) ; 10(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37189911

ABSTRACT

Chromosomal imbalance is implicated in developmental delay (DD), congenital malformations (CM), and intellectual disability (ID), and, thus, precise identification of copy number variations (CNVs) is essential. We therefore aimed to investigate the genetic heterogeneity in Saudi children with DD/CM/ID. High-resolution array comparative genomic hybridization (array CGH) was used to detect disease-associated CNVs in 63 patients. Quantitative PCR was done to confirm the detected CNVs. Giemsa banding-based karyotyping was also performed. Array CGH identified chromosomal abnormalities in 24 patients; distinct pathogenic and/or variants of uncertain significance CNVs were found in 19 patients, and aneuploidy was found in 5 patients including 47,XXY (n = 2), 45,X (n = 2) and a patient with trisomy 18 who carried a balanced Robertsonian translocation. CNVs including 9p24p13, 16p13p11, 18p11 had gains/duplications and CNVs, including 3p23p14, 10q26, 11p15, 11q24q25, 13q21.1q32.1, 16p13.3p11.2, and 20q11.1q13.2, had losses/deletions only, while CNVs including 8q24, 11q12, 15q25q26, 16q21q23, and 22q11q13 were found with both gains or losses in different individuals. In contrast, standard karyotyping detected chromosomal abnormalities in ten patients. The diagnosis rate of array CGH (28%, 18/63 patients) was around two-fold higher than that of conventional karyotyping (15.87%, 10/63 patients). We herein report, for the first time, the extremely rare pathogenic CNVs in Saudi children with DD/CM/ID. The reported prevalence of CNVs in Saudi Arabia adds value to clinical cytogenetics.

19.
Sci Rep ; 12(1): 57, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997121

ABSTRACT

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are oncogenic drivers to a variable extent in several tumors, including gliomas, acute myeloid leukemia (AML), cholangiocarcinoma, melanoma, and thyroid carcinoma. The pathobiological effects of these mutations vary considerably, impeding the identification of common expression profiles. We performed an expression meta-analysis between IDH-mutant (IDHmut) and IDH-wild-type (IDHwt) conditions in six human and mouse isogenic disease models. The datasets included colon cancer cells, glioma cells, heart tissue, hepatoblasts, and neural stem cells. Among differentially expressed genes (DEGs), serine protease 23 (PRSS23) was upregulated in four datasets, i.e., in human colon carcinoma cells, mouse heart tissue, mouse neural stem cells, and human glioma cells. Carbonic anhydrase 2 (CA2) and prolyl 3-hydroxylase 2 (P3H2) were upregulated in three datasets, and SOX2 overlapping transcript (SOX2-OT) was downregulated in three datasets. The most significantly overrepresented protein class was termed intercellular signal molecules. An additional DEG set contained genes that were both up- and downregulated in different datasets and included oxidases and extracellular matrix structural proteins as the most significantly overrepresented protein classes. In conclusion, this meta-analysis provides a comprehensive overview of the expression effects of IDH mutations shared between different isogenic disease models. The generated dataset includes biomarkers, e.g., PRSS23 that may gain relevance for further research or clinical applications in IDHmut tumors.


Subject(s)
Isocitrate Dehydrogenase/metabolism , Animals , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Isocitrate Dehydrogenase/genetics , Mice , Mutation , Protein Interaction Maps
20.
Transl Pediatr ; 11(6): 1040-1049, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35800288

ABSTRACT

Background: Dysembryoplastic neuroepithelial tumours (DNETs) are rare, with only a few reported lethal cases. Currently, there are focused efforts by neuro-oncology professionals to reveal the molecular characterisations of individual central nervous system tumours (CNSTs). Here, we report the status of cancer stem cell (CSC) genes associated with resilience and drug resistance in a paediatric DNET, since the deregulations and variations of CSC genes may prove critical to these tumours' molecular characterisations. Case Description: Immunofluorescence, clonogenic assay and whole exome sequencing (WES) were applied to the patient's tissue and its corresponding cell line. The case is for of a 6-year-old boy with intractable epilepsy and unremarkable physical and neurological examinations. Following magnetic resonance imaging (MRI) and histopathological tests, the patient was diagnosed with DNET. The child underwent a right posterior temporoparietooccipital neuronavigation-assisted craniotomy. Several CSC markers were upregulated in situ, including the metastasis-related protein, anterior gradient 2 (AGR2; 67%), and the Wnt-signalling-related protein, frizzled class receptor 9 (FZD9; 79%). The cell line possessed a similar DNA profile as the original tissue, stained positive for the tumorigenic marker [BMI1 proto-oncogene (BMI)] and CSC markers, and displayed drug resistance. Variants identified in the tissue DNA, which are listed in the catalogue of somatic mutations in cancer (COSMIC) database for genes previously known to be necessary for the development of the embryonic brain, included variants in the cell division cycle 27 (CDC27) gene. Conclusions: we report the in situ and in vitro presence of CSCs in a paediatric DNET.

SELECTION OF CITATIONS
SEARCH DETAIL