Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Publication year range
1.
Nature ; 621(7977): 129-137, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37587346

ABSTRACT

Homologous recombination (HR) deficiency is associated with DNA rearrangements and cytogenetic aberrations1. Paradoxically, the types of DNA rearrangements that are specifically associated with HR-deficient cancers only minimally affect chromosomal structure2. Here, to address this apparent contradiction, we combined genome-graph analysis of short-read whole-genome sequencing (WGS) profiles across thousands of tumours with deep linked-read WGS of 46 BRCA1- or BRCA2-mutant breast cancers. These data revealed a distinct class of HR-deficiency-enriched rearrangements called reciprocal pairs. Linked-read WGS showed that reciprocal pairs with identical rearrangement orientations gave rise to one of two distinct chromosomal outcomes, distinguishable only with long-molecule data. Whereas one (cis) outcome corresponded to the copying and pasting of a small segment to a distant site, a second (trans) outcome was a quasi-balanced translocation or multi-megabase inversion with substantial (10 kb) duplications at each junction. We propose an HR-independent replication-restart repair mechanism to explain the full spectrum of reciprocal pair outcomes. Linked-read WGS also identified single-strand annealing as a repair pathway that is specific to BRCA2 deficiency in human cancers. Integrating these features in a classifier improved discrimination between BRCA1- and BRCA2-deficient genomes. In conclusion, our data reveal classes of rearrangements that are specific to BRCA1 or BRCA2 deficiency as a source of cytogenetic aberrations in HR-deficient cells.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Chromosome Aberrations , DNA Repair , Neoplasms , Humans , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , BRCA2 Protein/deficiency , BRCA2 Protein/genetics , Chromosome Inversion , DNA Repair/genetics , Neoplasms/genetics , Translocation, Genetic/genetics , Homologous Recombination , Cytogenetic Analysis , Chromosome Aberrations/classification
2.
Cancer ; 130(4): 576-587, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37886874

ABSTRACT

BACKGROUND: Racial disparities in outcomes exist in endometrial cancer (EC). The contribution of ancestry-based variations in germline pathogenic variants (gPVs) is unknown. METHODS: Germline assessment of ≥76 cancer predisposition genes was performed in patients with EC undergoing tumor-normal Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets sequencing from January 1, 2015 through June 30, 2021. Self-reported race/ethnicity and Ashkenazi Jewish ancestry data classified patients into groups. Genetic ancestry was inferred from Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets. Rates of gPV and genetic counseling were compared by ancestry. RESULTS: Among 1625 patients with EC, 216 (13%) had gPVs; 15 had >1 gPV. Rates of gPV varied by self-reported ancestry (Ashkenazi Jewish, 40/202 [20%]; Asian, 15/124 [12%]; Black/African American (AA), 12/171 [7.0%]; Hispanic, 15/124 [12%]; non-Hispanic (NH) White, 129/927 [14%]; missing, 5/77 [6.5%]; p = .009], with similar findings by genetic ancestry (p < .001). We observed a lower likelihood of gPVs in patients of Black/AA (odds ratio [OR], 0.44; 95% CI, 0.22-0.81) and African (AFR) ancestry (OR, 0.42; 95% CI, 0.18-0.85) and a higher likelihood in patients of Ashkenazi Jewish genetic ancestry (OR, 1.62; 95% CI; 1.11-2.34) compared with patients of non-Hispanic White/European ancestry, even after adjustment for age and molecular subtype. Somatic landscape influenced gPVs with lower rates of microsatellite instability-high tumors in patients of Black/AA and AFR ancestry. Among those with newly identified gPVs (n = 114), 102 (89%) were seen for genetic counseling, with lowest rates among Black/AA (75%) and AFR patients (67%). CONCLUSIONS: In those with EC, gPV and genetic counseling varied by ancestry, with lowest rates among Black/AA and AFR patients, potentially contributing to disparities in outcomes given implications for treatment and cancer prevention. PLAIN LANGUAGE SUMMARY: Black women with endometrial cancer do worse than White women, and there are many reasons for this disparity. Certain genetic changes from birth (mutations) can increase the risk of cancer, and it is unknown if rates of these changes are different between different ancestry groups. Genetic mutations in 1625 diverse women with endometrial cancer were studied and the lowest rates of mutations and genetic counseling were found in Black and African ancestry women. This could affect their treatment options as well as their families and may make disparities worse.


Subject(s)
Endometrial Neoplasms , Ethnicity , Racial Groups , Female , Humans , Endometrial Neoplasms/genetics , Germ Cells
3.
Clin Gastroenterol Hepatol ; 22(6): 1245-1254.e10, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38382726

ABSTRACT

BACKGROUND & AIMS: Cytologic and histopathologic diagnosis of non-ductal pancreatic neoplasms can be challenging in daily clinical practice, whereas it is crucial for therapy and prognosis. The cancer methylome is successfully used as a diagnostic tool in other cancer entities. Here, we investigate if methylation profiling can improve the diagnostic work-up of pancreatic neoplasms. METHODS: DNA methylation data were obtained for 301 primary tumors spanning 6 primary pancreatic neoplasms and 20 normal pancreas controls. Neural Network, Random Forest, and extreme gradient boosting machine learning models were trained to distinguish between tumor types. Methylation data of 29 nonpancreatic neoplasms (n = 3708) were used to develop an algorithm capable of detecting neoplasms of non-pancreatic origin. RESULTS: After benchmarking 3 state-of-the-art machine learning models, the random forest model emerged as the best classifier with 96.9% accuracy. All classifications received a probability score reflecting the confidence of the prediction. Increasing the score threshold improved the random forest classifier performance up to 100% with 87% of samples with scores surpassing the cutoff. Using a logistic regression model, detection of nonpancreatic neoplasms achieved an area under the curve of >0.99. Analysis of biopsy specimens showed concordant classification with their paired resection sample. CONCLUSIONS: Pancreatic neoplasms can be classified with high accuracy based on DNA methylation signatures. Additionally, non-pancreatic neoplasms are identified with near perfect precision. In summary, methylation profiling can serve as a valuable adjunct in the diagnosis of pancreatic neoplasms with minimal risk for misdiagnosis, even in the pre-operative setting.


Subject(s)
DNA Methylation , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/pathology , Male , Female , Aged , Middle Aged
4.
Mod Pathol ; : 100541, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897452

ABSTRACT

Genetic alterations in the retinoblastoma susceptibility gene (RB1) are present in up to 40% of triple-negative breast cancers (BCs) and frequent in tumors with neuroendocrine differentiation, including small cell neuroendocrine carcinoma. Data on RB1 genetic alterations in estrogen receptor (ER)-positive BCs is scarce. In this study, we sought to define the morphologic, immunohistochemical and genetic features of ER-positive BCs harboring somatic alterations in RB1, with emphasis on neuroendocrine differentiation. ER-positive BCs with pathogenic RB1 genetic alterations were identified in less than 1% of cases from a cohort of 6,026 BCs previously subjected to targeted next-generation sequencing, including 23 primary BCs (pBCs) and 32 recurrent/metastatic BCs (mBCs). In cases where loss of heterozygosity (LOH) of the wild type RB1 allele could be assessed (93%, 51/55), most pBCs (82%, 18/22) and mBCs (90%, 26/29) exhibited biallelic RB1 inactivation, primarily through loss-of-function mutation and LOH (98%, 43/44). Upon histologic review, a subset of RB1-altered tumors exhibited neuroendocrine morphology (13%, 7/55), which correlated with expression of neuroendocrine markers (39%, 9/23) in both pBC (27%, 3/11) and mBCs (50%, 6/12). Loss of Rb protein expression was observed in BCs with biallelic RB1 loss only, with similar frequency in pBCs (82%, 9/11) and mBCs (75%, 9/12). All cases with neuroendocrine marker expression (n=9) and/or neuroendocrine morphology (n=7) harbored biallelic genetic inactivation of RB1 and exhibited Rb loss of expression. TP53 (53%, 29/55) and PIK3CA (45%, 25/55) were the most frequently co-mutated genes across the cohort. Overall, these findings suggest that ER-positive BCs with biallelic RB1 genetic alterations frequently exhibit Rb protein loss, which correlates with neuroendocrine differentiation in select BCs. This study provides insights into the molecular and phenotypic heterogeneity of BCs with RB1 genetic inactivation, underscoring the need for further research into the potential clinical implications associated with these tumors.

5.
Mod Pathol ; 37(2): 100375, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37925055

ABSTRACT

CDH1 encodes for E-cadherin, and its loss of function is the hallmark of invasive lobular carcinoma (ILC). Albeit vanishingly rare, biallelic CDH1 alterations may be found in nonlobular breast carcinomas (NL-BCs). We sought to determine the clinicopathologic characteristics and repertoire of genetic alterations of NL-BCs harboring CDH1 biallelic genetic alterations. Analysis of 5842 breast cancers (BCs) subjected to clinical tumor-normal sequencing with an FDA-cleared multigene panel was conducted to identify BCs with biallelic CDH1 pathogenic/likely pathogenic somatic mutations lacking lobular features. The genomic profiles of NL-BCs with CDH1 biallelic genetic alterations were compared with those of ILCs and invasive ductal carcinomas (IDCs), matched by clinicopathologic characteristics. Of the 896 CDH1-altered BCs, 889 samples were excluded based on the diagnosis of invasive mixed ductal/lobular carcinoma or ILC or the detection of monoallelic CDH1 alterations. Only 7 of the 5842 (0.11%) BCs harbored biallelic CDH1 alterations and lacked lobular features. Of these, 4/7 (57%) cases were ER-positive/HER2-negative, 1/7 (14%) was ER-positive/HER2-positive, and 2/7 (29%) were ER-negative/HER2-negative. In total, 5/7 (71%) were of Nottingham grade 2, and 2/7 (29%) were of grade 3. The NL-BCs with CDH1 biallelic genetic alterations included a mucinous carcinoma (n = 1), IDCs with focal nested growth (n = 2), IDC with solid papillary (n = 1) or apocrine (n = 2) features, and an IDC of no special type (NST; n = 1). E-cadherin expression, as detected by immunohistochemistry, was absent (3/5) or aberrant (discontinuous membranous/cytoplasmic/granular; 2/5). However, NL-BCs with CDH1 biallelic genetic alterations displayed recurrent genetic alterations, including TP53, PIK3CA (57%, 4/7; each), FGFR1, and NCOR1 (28%, 2/7, each) alterations. Compared with CDH1 wild-type IDC-NSTs, NL-BCs less frequently harbored GATA3 mutations (0% vs 47%, P = .03), but no significant differences were detected when compared with matched ILCs. Therefore, NL-BCs with CDH1 biallelic genetic alterations are vanishingly rare, predominantly comprise IDCs with special histologic features, and have genomic features akin to luminal B ER-positive BCs.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Humans , Female , Carcinoma, Lobular/pathology , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Cadherins/genetics , Genomics , Antigens, CD/genetics
6.
Gynecol Oncol ; 185: 58-67, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38368814

ABSTRACT

OBJECTIVE: Adenoid cystic carcinoma (AdCC) of the Bartholin's gland (AdCC-BG) is a very rare gynecologic vulvar malignancy. AdCC-BGs are slow-growing but locally aggressive and are associated with high recurrence rates. Here we sought to characterize the molecular underpinning of AdCC-BGs. METHODS: AdCC-BGs (n = 6) were subjected to a combination of RNA-sequencing, targeted DNA-sequencing, reverse-transcription PCR, fluorescence in situ hybridization (FISH) and MYB immunohistochemistry (IHC). Clinicopathologic variables, somatic mutations, copy number alterations and chimeric transcripts were assessed. RESULTS: All six AdCC-BGs were biphasic, composed of ductal and myoepithelial cells. Akin to salivary gland and breast AdCCs, three AdCC-BGs had the MYB::NFIB fusion gene with varying breakpoints, all of which were associated with MYB overexpression by IHC. Two AdCC-BGs were underpinned by MYBL1 fusion genes with different gene partners, including MYBL1::RAD51B and MYBL1::EWSR1 gene fusions, and showed MYB protein expression. Although the final AdCC-BG studied had MYB protein overexpression, no gene fusion was identified. AdCC-BGs harbored few additional somatic genetic alterations, and only few mutations in cancer-related genes were identified, including GNAQ, GNAS, KDM6A, AKT1 and BCL2, none of which were recurrent. Two AdCC-BGs, both with a MYB::NFIB fusion gene, developed metastatic disease. CONCLUSIONS: AdCC-BGs constitute a convergent phenotype, whereby activation of MYB or MYBL1 can be driven by the MYB::NFIB fusion gene or MYBL1 rearrangements. Our observations further support the notion that AdCCs, irrespective of organ site, constitute a genotypic-phenotypic correlation. Assessment of MYB or MYBL1 rearrangements may be used as an ancillary marker for the diagnosis of AdCC-BGs.


Subject(s)
Bartholin's Glands , Carcinoma, Adenoid Cystic , Gene Rearrangement , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-myb , Trans-Activators , Vulvar Neoplasms , Humans , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/metabolism , Female , Vulvar Neoplasms/genetics , Vulvar Neoplasms/pathology , Vulvar Neoplasms/metabolism , Bartholin's Glands/pathology , Bartholin's Glands/metabolism , Middle Aged , Oncogene Proteins, Fusion/genetics , Trans-Activators/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Adult , Aged , Proto-Oncogene Proteins
7.
Gynecol Oncol ; 182: 32-38, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246044

ABSTRACT

OBJECTIVES: Mesonephric (MA) and mesonephric-like (MLA) adenocarcinomas are rare cancers, and data on clinical behavior and response to therapy are limited. We sought to report molecular features, treatment, and outcomes of MA/MLA from a single institution. METHODS: Patients with MA (cervix) or MLA (uterus, ovary, other) treated at Memorial Sloan Kettering Cancer Center (MSK) from 1/2008-12/2021 underwent pathologic re-review. For patients with initial treatment at MSK, progression-free survival (PFS1) was calculated as time from initial surgery to progression or death; second PFS (PFS2) was calculated as time from start of treatment for recurrence to subsequent progression or death. Overall survival (OS) was calculated for all patients. Images were retrospectively reviewed to determine treatment response. Somatic genetic alterations were assessed by clinical tumor-normal sequencing (MSK-Integrated Mutation Profiling of Actionable Cancer Targets [MSK-IMPACT]). RESULTS: Of 81 patients with confirmed gynecologic MA/MLA, 36 received initial treatment at MSK. Sites of origin included cervix (n = 9, 11%), uterus (n = 42, 52%), ovary (n = 28, 35%), and other (n = 2, 2%). Of the 36 patients who received initial treatment at MSK, 20 (56%) recurred; median PFS1 was 33 months (95% CI: 17-not evaluable), median PFS2 was 8.3 months (95% CI: 6.9-14), and median OS was 87 months (95% CI: 58.2-not evaluable). Twenty-six of the 36 patients underwent MSK-IMPACT testing, and 25 (96%) harbored MAPK pathway alterations. CONCLUSION: Most patients diagnosed with early-stage disease ultimately recurred. Somatic MAPK signaling pathway mutations appear to be highly prevalent in MA/MLA, and therapeutics that target this pathway are worthy of further study.


Subject(s)
Adenocarcinoma , Humans , Female , Retrospective Studies , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Adenocarcinoma/pathology , Mutation , Ovary/pathology , Cervix Uteri/pathology
8.
Gynecol Oncol ; 188: 52-57, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941962

ABSTRACT

OBJECTIVE: Mirvetuximab soravtansine may be a potentially effective therapeutic option for ovarian low-grade serous carcinoma (LGSC), but the prevalence of folate receptor alpha (FRα) overexpression in this tumor type is unknown. We sought to characterize FRα expression in LGSC and its association with clinical and molecular features. METHODS: FRα immunohistochemistry was performed on a tissue microarray comprised of 89 LGSCs and 42 ovarian serous borderline tumors (SBTs). Clinical tumor-normal panel-based sequencing was performed on 78 LGSCs. Associations between FRα-high status and clinicopathologic characteristics and survival outcomes were examined. RESULTS: Of 89 LGSCs, 36 (40%) were FRα-high (≥75% of viable tumor cells exhibiting moderate-to-strong membranous expression). Of 9 patients with LGSC and samples from different timepoints, 4 (44%) had discordant results, with conversion from FRα-negative to FRα-high in 3 (33%) cases. There was no association between FRα-high status with age, race, or progression-free/overall survival. A MAPK pathway genetic alteration, most commonly involving KRAS (n = 23), was present in 45 (58%) LGSCs. Those lacking MAPK pathway alterations were more likely to be FRα-high compared to MAPK-altered LGSCs (61% vs 20%, p < 0.001). In SBTs, FRα-high expression was associated with high-risk (micropapillary) histology and/or subsequent LGSC recurrence compared to conventional SBTs without malignant recurrence (53% vs 9%, p = 0.008). CONCLUSIONS: Future studies of FRα-directed therapy in patients with LGSC are warranted. Discordant FRα status at recurrence suggests potential benefit for retesting. A biomarker-driven approach to direct treatment selection in LGSC is recommended. As high FRα expression is more common amongst tumors lacking MAPK pathway genetic alterations, FRα testing to determine eligibility for mirvetuximab soravtansine therapy is particularly recommended for this subgroup.

9.
Gynecol Oncol ; 180: 35-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38041901

ABSTRACT

OBJECTIVE: To define molecular features of ovarian cancer (OC) with germline pathogenic variants (PVs) in non-BRCA homologous recombination (HR) genes and analyze survival compared to BRCA1/2 and wildtype (WT) OC. METHODS: We included patients with OC undergoing tumor-normal sequencing (MSK-IMPACT) from 07/01/2015-12/31/2020, including germline assessment of BRCA1/2 and other HR genes ATM, BARD1, BRIP1, FANCA, FANCC, NBN, PALB2, RAD50, RAD51B, RAD51C, and RAD51D. Biallelic inactivation was assessed within tumors. Progression-free (PFS) and overall survival (OS) were calculated from pathologic diagnosis using the Kaplan-Meier method with left truncation. Whole-exome sequencing (WES) was performed in a subset. RESULTS: Of 882 patients with OC, 56 (6.3%) had germline PVs in non-BRCA HR genes; 95 (11%) had BRCA1-associated OC (58 germline, 37 somatic); and 59 (6.7%) had BRCA2-associated OC (40 germline, 19 somatic). High rates of biallelic alterations were observed among germline PVs in BRIP1 (11/13), PALB2 (3/4), RAD51B (3/4), RAD51C (3/4), and RAD51D (8/10). In cases with WES (27/35), there was higher tumor mutational burden (TMB; median 2.5 [1.1-6.0] vs. 1.2 mut/Mb [0.6-2.6]) and enrichment of HR-deficient (HRD) mutational signatures in tumors associated with germline PALB2 and RAD51B/C/D compared with BRIP1 PVs (p < 0.01). Other features of HRD, including telomeric-allelic imbalance (TAI) and large-scale state transitions (LSTs), were similar. Although there was heterogeneity in PFS/OS by gene group, only BRCA1/2-associated OC had improved survival compared to WT OC (p < 0.01). CONCLUSIONS: OCs associated with germline PVs in non-BRCA HR genes represent a heterogenous group, with PALB2 and RAD51B/C/D associated with an HRD phenotype.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Ovarian Neoplasms/pathology , Germ-Line Mutation , Homologous Recombination , Phenotype , Germ Cells/pathology , Genetic Predisposition to Disease
10.
Mod Pathol ; 36(6): 100144, 2023 06.
Article in English | MEDLINE | ID: mdl-36828363

ABSTRACT

Acinic cell carcinoma (AciCC) is a tumor that is recognized in both the breast and salivary glands. Recently, the recurrent genomic rearrangement, t(4;9)(q13;q31) was identified in salivary AciCC that results in constitutive upregulation of the nuclear transcription factor NR4A3, which can be detected by immunohistochemistry. In this study, we sought to evaluate NR4A3 expression in breast AciCC using immunohistochemistry. Strong and diffuse nuclear staining was considered a positive result. Sixteen AciCCs were studied, including 8 pure AciCCs and 8 AciCCs admixed with other types (invasive carcinoma of no special type in 5 cases and metaplastic carcinoma in 3 cases). All 16 AciCCs showed negative results for NR4A3 expression. Four cases with available material were evaluated for rearrangements of the NR4A3 gene by fluorescence in situ hybridization and no rearrangements were observed. Whole-genome sequencing of 1 AciCC revealed a TP53 splice-site mutation, high levels of genomic instability, and genomic features of homologous recombination DNA repair defects; a structural variant analysis of this case did not reveal the presence of a t(4;9) rearrangement. We conclude that breast AciCCs consistently lack NR4A3 rearrangement or overexpression, unlike most of the salivary AciCCs, and that consistent with previous results, breast AciCCs are associated with genomic alterations more similar to those seen in triple-negative breast carcinomas than salivary gland AciCCs. These results suggest that unlike other salivary gland-like tumors that occur in the breast, the molecular underpinnings of the salivary gland and breast AciCCs are different and that the salivary gland and breast AciCCs likely represent distinct entities.


Subject(s)
Carcinoma, Acinar Cell , Carcinoma , Receptors, Steroid , Salivary Gland Neoplasms , Humans , Carcinoma, Acinar Cell/genetics , Carcinoma, Acinar Cell/pathology , In Situ Hybridization, Fluorescence , Salivary Gland Neoplasms/pathology , Carcinoma/genetics , Gene Rearrangement , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , DNA-Binding Proteins/genetics , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics
11.
Gynecol Oncol ; 179: 16-23, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890416

ABSTRACT

OBJECTIVE: To assess the clinicopathologic, molecular profiles, and survival outcomes of patients with endometrial carcinomas (ECs) harboring telomerase reverse transcriptase (TERT) hotspot mutations or gene amplification. METHODS: ECs harboring somatic TERT promoter hotspot mutations or gene amplification (TERT-altered) were identified from 1944 ECs that underwent clinical tumor-normal sequencing from 08/2016-12/2021. Clinicopathologic variables, somatic mutation profiles, and survival outcomes of TERT-alt and TERT-wild-type EC were assessed. RESULTS: We identified 66 TERT-altered ECs (43 TERT-mutated and 23 TERT-amplified), representing 3% of the unselected ECs across histologic subtypes. Most TERT-altered ECs were of copy number (CN)-high/TP53abn molecular subtype (n = 40, 60%), followed by microsatellite-unstable (MSI-H) or CN-low/no specific molecular profile (NSMP)(n = 13, 20% each). TERT-amplified and TERT-mutated ECs were molecularly distinct, with TERT-amplified ECs being more genomically instable and more frequently harboring TP53 and PPP2R1A alterations (q < 0.1). Compared to TERT-wild-type ECs, TERT-altered ECs were more commonly of CN-H/TP53abn molecular subtype (31% vs 57%, p = 0.001), serous histology (10% vs 26%, p = 0.004), and were significantly enriched for TP53, CDKN2A/B, and DROSHA somatic genetic alterations (q < 0.1). Median progression-free survival was 18.7 months (95% CI 11.8-not estimable [NE]) for patients with TERT-altered EC and 80.9 months (65.8-NE) for patients with TERT-wild-type EC (HR 0.33, 95% CI 0.21-0.51, p < 0.001). Similarly, median overall survival was 46.7 months (95% CI 30-NE) for TERT-altered EC patients and not reached for TERT-wild-type EC patients (HR 0.24, 95% CI 0.13-0.44, p < 0.001). CONCLUSION: TERT-altered ECs, although rare, are enriched for CN-high/TP53abn tumors, TP53, CDKN2A/B and DROSHA somatic mutations, and independently predict worse survival outcomes.


Subject(s)
Endometrial Neoplasms , Telomerase , Female , Humans , Gene Amplification , Endometrial Neoplasms/pathology , Mutation , Telomerase/genetics , Promoter Regions, Genetic
12.
Gynecol Oncol ; 174: 262-272, 2023 07.
Article in English | MEDLINE | ID: mdl-37245486

ABSTRACT

PURPOSE: Using next generation sequencing (NGS), The Cancer Genome Atlas (TCGA) found that endometrial carcinomas (ECs) fall under one of four molecular subtypes, and a POLE mutation status, mismatch repair (MMR) and p53 immunohistochemistry (IHC)-based surrogate has been developed. We sought to retrospectively classify and characterize a large series of unselected ECs that were prospectively subjected to clinical sequencing by utilizing clinical molecular and IHC data. EXPERIMENTAL DESIGN: All patients with EC with clinical tumor-normal MSK-IMPACT NGS from 2014 to 2020 (n = 2115) were classified by integrating molecular data (i.e., POLE mutation, TP53 mutation, MSIsensor score) and MMR and p53 IHC results. Survival analysis was performed for primary EC patients with upfront surgery at our institution. RESULTS: Utilizing our integrated approach, significantly more ECs were molecularly classified (1834/2115, 87%) as compared to the surrogate (1387/2115, 66%, p < 0.001), with an almost perfect agreement for classifiable cases (Kappa 0.962, 95% CI 0.949-0.975). Discrepancies were primarily due to TP53 mutations in p53-IHC-normal ECs. Of the 1834 ECs, most were of copy number (CN)-high molecular subtype (40%), followed by CN-low (32%), MSI-high (23%) and POLE (5%). Histologic and genomic variability was present amongst all molecular subtypes. Molecular classification was prognostic in early- and advanced-stage disease, including early-stage endometrioid EC. CONCLUSIONS: The integration of clinical NGS and IHC data allows for an algorithmic approach to molecularly classifying newly diagnosed EC, while overcoming issues of IHC-based genetic alteration detection. Such integrated approach will be important moving forward given the prognostic and potentially predictive information afforded by this classification.


Subject(s)
Endometrial Neoplasms , Tumor Suppressor Protein p53 , Female , Humans , Tumor Suppressor Protein p53/genetics , Immunohistochemistry , Retrospective Studies , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Prognosis , Mutation
13.
J Pathol ; 257(5): 635-649, 2022 08.
Article in English | MEDLINE | ID: mdl-35411948

ABSTRACT

Clear cell carcinoma (CCC) of the cervix (cCCC) is a rare and aggressive type of human papillomavirus (HPV)-negative cervical cancer with limited effective treatment options for recurrent or metastatic disease. Historically, CCCs of the lower genital tract were associated with in utero diethylstilbestrol exposure; however, the genetic landscape of sporadic cCCCs remains unknown. Here we sought to define the molecular underpinning of cCCCs. Using a combination of whole-exome, targeted capture, and RNA-sequencing, we identified pathogenic genetic alterations in the Hippo signaling pathway in 50% (10/20) of cCCCs, including recurrent WWTR1 S89W somatic mutations in 40% (4/10) of the cases harboring mutations in the Hippo pathway. Irrespective of the presence or absence of Hippo pathway genetic alterations, however, all primary cCCCs analyzed in this study (n = 20) harbored features of Hippo pathway deregulation at the transcriptomic and protein levels. In vitro functional analysis revealed that expression of the WWTR1 S89W mutation leads to reduced binding of TAZ to 14-3-3, promoting constitutive nuclear translocation of TAZ and Hippo pathway repression. WWTR1 S89W expression was found to lead to acquisition of oncogenic behavior, including increased proliferation, migration, and colony formation in vitro as well as increased tumorigenesis in vivo, which could be reversed by targeted inhibition of the TAZ/YAP1 complex with verteporfin. Finally, xenografts expressing WWTR1 S89W displayed a shift in tumor phenotype, becoming more infiltrative as well as less differentiated, and were found to be composed of cells with conspicuous cytoplasmic clearing as compared to controls. Our results demonstrate that Hippo pathway alterations are likely drivers of cCCCs and likely contribute to the clear cell phenotype. Therapies targeting this pathway may constitute a new class of treatment for these rare, aggressive tumors. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Hippo Signaling Pathway , Trans-Activators , Carcinogenesis/genetics , Cervix Uteri , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mutation , Signal Transduction/physiology , Trans-Activators/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins
14.
Mod Pathol ; 35(7): 972-978, 2022 07.
Article in English | MEDLINE | ID: mdl-34961764

ABSTRACT

High-grade endometrial stromal sarcomas (HGESSs) are more aggressive and have higher rates of resistance to endocrine therapy than low-grade endometrial stromal sarcomas (LGESSs). The pathogenesis of hormonal resistance in these lesions has yet to be defined. Here we sought to histologically and genetically characterize 3 LGESSs and their recurrences that underwent histologic high-grade transformation following endocrine therapy. For this, DNA from primary tumors and select subsequent recurrences were subject to massively parallel sequencing targeting 468 cancer-related genes. Somatic mutation analyses were performed using validated bioinformatics methods. In addition, RNA from each case was evaluated for the presence of gene fusions using targeted RNA-sequencing. All patients initially presented with LGESS, developed HGESS recurrences, and received at least 2 lines of hormonal suppressive therapy. Gene fusions classically described as associated with LGESS were identified in all 3 cases, including JAZF1-PHF1, EPC1-PHF1 and JAZF1-SUZ12 fusions for Cases 1, 2 and 3, respectively. Targeted sequencing analysis revealed that none of the primary LGESS, however the HGESS recurrences of Cases 1 and 3, and the LGESS and HGESS recurrences of Case 2 post endocrine treatment harbored ESR1 p.Y537S hotspot mutations. These ESR1 ligand-binding domain mutations have been found as a mechanism of acquired endocrine resistance in breast cancer. Also, a reduction in estrogen receptor (ER) expression was observed in recurrences. Our findings suggest that the ESR1 p.Y537S hotspot mutation in LGESS with histologic high-grade transformation may be associated with endocrine resistance in these lesions. Furthermore, our data suggest that genetic analyses may be performed in recurrent LGESS following hormonal therapy, development of high-grade morphology, and/or altered/diminished ER expression.


Subject(s)
Endometrial Neoplasms , Estrogen Receptor alpha , Sarcoma, Endometrial Stromal , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Estrogen Receptor alpha/genetics , Female , Humans , Mutation , RNA , Recurrence , Sarcoma, Endometrial Stromal/genetics , Sarcoma, Endometrial Stromal/pathology
15.
Mod Pathol ; 35(7): 956-961, 2022 07.
Article in English | MEDLINE | ID: mdl-34969956

ABSTRACT

Pancreatic neoplasms are heterogenous and have traditionally been classified by assessing their lines of cellular differentiation using histopathologic methods, particularly morphologic and immunohistochemical evaluation. These methods frequently identify overlapping differentiation along ductal, acinar, and neuroendocrine lines, raising diagnostic challenges as well as questions regarding the relationship of these neoplasms. Neoplasms with acinar differentiation, in particular, frequently show more than one line of differentiation based on immunolabeling. Genome methylation signatures, in contrast, are better conserved within cellular lineages, and are increasingly used to support the classification of neoplasms. We characterized the epigenetic relationships between pancreatoblastomas, acinar cell carcinomas (including mixed variants), pancreatic neuroendocrine tumors, solid pseudopapillary neoplasms, and pancreatic ductal adenocarcinomas using a genome-wide array platform. Using unsupervised learning approaches, pancreatic neuroendocrine tumors, solid pseudopapillary neoplasms, ductal adenocarcinomas, and normal pancreatic tissue samples all localized to distinct clusters based on their methylation profiles, whereas all neoplasms with acinar differentiation occupied a broad overlapping region located between the predominantly acinar normal pancreatic tissue and ductal adenocarcinoma clusters. Our data provide evidence to suggest that acinar cell carcinomas and pancreatoblastomas are similar at the epigenetic level. These findings are consistent with genomic and clinical observations that mixed acinar neoplasms are closely related to pure acinar cell carcinomas rather than to neuroendocrine tumors or ductal adenocarcinomas.


Subject(s)
Carcinoma, Acinar Cell , Pancreatic Neoplasms , Carcinoma, Acinar Cell/genetics , Carcinoma, Acinar Cell/pathology , Epigenesis, Genetic , Humans , Pancreas/metabolism , Pancreatic Neoplasms/pathology
16.
Proc Natl Acad Sci U S A ; 116(52): 26823-26834, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31826955

ABSTRACT

Forkhead box A1 (FOXA1) is a pioneer factor that facilitates chromatin binding and function of lineage-specific and oncogenic transcription factors. Hyperactive FOXA1 signaling due to gene amplification or overexpression has been reported in estrogen receptor-positive (ER+) endocrine-resistant metastatic breast cancer. However, the molecular mechanisms by which FOXA1 up-regulation promotes these processes and the key downstream targets of the FOXA1 oncogenic network remain elusive. Here, we demonstrate that FOXA1 overexpression in ER+ breast cancer cells drives genome-wide enhancer reprogramming to activate prometastatic transcriptional programs. Up-regulated FOXA1 employs superenhancers (SEs) to synchronize transcriptional reprogramming in endocrine-resistant breast cancer cells, reflecting an early embryonic development process. We identify the hypoxia-inducible transcription factor hypoxia-inducible factor-2α (HIF-2α) as the top high FOXA1-induced SE target, mediating the impact of high FOXA1 in activating prometastatic gene sets and pathways associated with poor clinical outcome. Using clinical ER+/HER2- metastatic breast cancer datasets, we show that the aberrant FOXA1/HIF-2α transcriptional axis is largely nonconcurrent with the ESR1 mutations, suggesting different mechanisms of endocrine resistance and treatment strategies. We further demonstrate the selective efficacy of an HIF-2α antagonist, currently in clinical trials for advanced kidney cancer and recurrent glioblastoma, in reducing the clonogenicity, migration, and invasion of endocrine-resistant breast cancer cells expressing high FOXA1. Our study has uncovered high FOXA1-induced enhancer reprogramming and HIF-2α-dependent transcriptional programs as vulnerable targets for treating endocrine-resistant and metastatic breast cancer.

17.
Mod Pathol ; 34(10): 1850-1859, 2021 10.
Article in English | MEDLINE | ID: mdl-34079072

ABSTRACT

The SWI/SNF family of proteins is a multisubunit ATPase complex frequently altered in human cancer. Inactivating mutations in SWI/SNF-related matrix-associated actin-dependent regulator of chromatin (SMARCs) underpin a subset of tumors such as the malignant rhabdoid tumor and small cell carcinoma of the ovary, hypercalcemic type. Here, we investigated the genotypic and phenotypic characteristics of breast cancers harboring somatic genetic alterations affecting genes of the SMARC family. We analyzed a series of 6026 primary and metastatic breast cancers subjected to targeted-capture sequencing. SMARC core subunit (SMARCA4, SMARCB1, and SMARCA2) alterations were identified in <1% of all breast cancers, consisting of 27 primary and 30 recurrent/metastatic tumors. The majority of SMARC alterations were monoallelic mutations (47/57, 82%) and thus categorized into two groups: Class 1 alterations consisting of potentially pathogenic mutations and rearrangements and Class 2 alterations consisting of missense mutations and small in-frame deletions of unknown significance. Biallelic events in a SMARC gene were present in a minority of cases (10/57, 18%). Histologic patterns in the form of rhabdoid, composite rhabdoid, sarcomatoid or anaplastic features were observed in a subset of Class 1 primary and metastatic tumors (7/57, 12%). SMARC protein was preserved in nearly all tumors analyzed with immunohistochemistry (26/30, 87%). Four Class 1 tumors demonstrated altered SMARC protein expression in the form of loss (1/30, 3%) or mosaic pattern (3/30, 10%). Complete loss of SMARCA2 (BRM) was observed in a sole tumor with composite rhabdoid morphology, and biallelic hits in the SMARCA2 gene. The genomic landscape of both primary Class 1 and 2 breast cancers did not reveal any characteristic findings. In summary, SMARC alterations likely contribute to the biology of a rare subset of breast cancers in the form of biallelic or pathogenic alterations in SMARC, as evidenced by SMARC-deficient phenotype or altered expression of SMARC protein.


Subject(s)
Breast Neoplasms/pathology , DNA Helicases/genetics , Nuclear Proteins/genetics , SMARCB1 Protein/genetics , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Female , Genomics , Genotype , Humans , Middle Aged , Mutation
18.
Mod Pathol ; 34(6): 1213-1225, 2021 06.
Article in English | MEDLINE | ID: mdl-33318584

ABSTRACT

Gastric-type cervical adenocarcinoma (GCA) is an aggressive type of endocervical adenocarcinoma characterized by mucinous morphology, gastric-type mucin, lack of association with human papillomavirus (HPV) and resistance to chemo/radiotherapy. We characterized the landscape of genetic alterations in a large cohort of GCAs, and compared it with that of usual-type HPV-associated endocervical adenocarcinomas (UEAs), pancreatic adenocarcinomas (PAs) and intestinal-type gastric adenocarcinomas (IGAs). GCAs (n = 68) were subjected to massively parallel sequencing targeting 410-468 cancer-related genes. Somatic mutations and copy number alterations (CNAs) were determined using validated bioinformatics methods. Mutational data for UEAs (n = 21), PAs (n = 178), and IGAs (n = 148) from The Cancer Genome Atlas (TCGA) were obtained from cBioPortal. GCAs most frequently harbored somatic mutations in TP53 (41%), CDKN2A (18%), KRAS (18%), and STK11 (10%). Potentially targetable mutations were identified in ERBB3 (10%), ERBB2 (8%), and BRAF (4%). GCAs displayed low levels of CNAs with no recurrent amplifications or homozygous deletions. In contrast to UEAs, GCAs harbored more frequent mutations affecting cell cycle-related genes including TP53 (41% vs 5%, p < 0.01) and CDKN2A (18% vs 0%, p = 0.01), and fewer PIK3CA mutations (7% vs 33%, p = 0.01). TP53 mutations were less prevalent in GCAs compared to PAs (41% vs 56%, p < 0.05) and IGAs (41% vs 57%, p < 0.05). GCAs showed a higher frequency of STK11 mutations than PAs (10% vs 2%, p < 0.05) and IGAs (10% vs 1%, p < 0.05). GCAs harbored more frequent mutations in ERBB2 and ERBB3 (9% vs 1%, and 10% vs 0.5%, both p < 0.01) compared to PAs, and in CDKN2A (18% vs 1%, p < 0.05) and KRAS (18% vs 6%, p < 0.05) compared to IGAs. GCAs harbor recurrent somatic mutations in cell cycle-related genes and in potentially targetable genes, including ERBB2/3. Mutations in genes such as STK11 may be used as supportive evidence to help distinguish GCAs from other adenocarcinomas with similar morphology in metastatic sites.


Subject(s)
Adenocarcinoma/genetics , Genes, cdc/genetics , Uterine Cervical Neoplasms/genetics , Adenocarcinoma/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Mutation , Sequence Analysis, DNA , Uterine Cervical Neoplasms/pathology
19.
Mod Pathol ; 34(8): 1570-1587, 2021 08.
Article in English | MEDLINE | ID: mdl-33772212

ABSTRACT

Mesonephric carcinoma of the cervix is a rare tumor derived from Wolffian remnants. Mesonephric-like carcinomas of the ovary and endometrium, while morphologically similar, do not have obvious Wolffian derivation. Here, we sought to characterize the repertoire of genetic alterations in primary mesonephric and mesonephric-like carcinomas, in the distinct histologic components of mixed cases, as well as in matched primary tumors and metastases. DNA from microdissected tumor and normal tissue from mesonephric carcinomas (cervix, n = 8) and mesonephric-like carcinomas (ovarian n = 15, endometrial n = 13) were subjected to sequencing targeting 468 cancer-related genes. The histologically distinct components of four cases with mixed histology and four primary tumors and their matched metastases were microdissected and analyzed separately. Mesonephric-like carcinomas were underpinned by somatic KRAS mutations (25/28, 89%) akin to mesonephric carcinomas (8/8, 100%), but also harbored genetic alterations more frequently reported in Müllerian tumors. Mesonephric-like carcinomas that lacked KRAS mutations harbored NRAS (n = 2, ovary) or BRAF (n = 1, endometrium) hotspot mutations. PIK3CA mutations were identified in both mesonephric-like (8/28, 28%) and mesonephric carcinomas (2/8, 25%). Only mesonephric-like tumors harbored CTNNB1 hotspot (4/28, 14%) and PTEN (3/13, 23%) mutations. Copy number analysis revealed frequent gains of chromosomes 1q and 10 in both mesonephric (87% 1q; 50% chromosome 10) and mesonephric-like tumors (89% 1q; 43% chromosome 10). Chromosome 12 gains were more frequent in ovarian mesonephric-like carcinomas, and losses of chromosome 9 were more frequent in mesonephric than in mesonephric-like carcinomas (both p = 0.01, Fisher's exact test). The histologically distinct components of four mixed cases were molecularly related and shared similar patterns of genetic alterations. The progression from primary to metastatic lesions involved the acquisition of additional mutations, and/or shifts from subclonal to clonal mutations. Our findings suggest that mesonephric-like carcinomas are derived from a Müllerian substrate with differentiation along Wolffian/mesonephric lines.


Subject(s)
Genital Neoplasms, Female/genetics , Genital Neoplasms, Female/pathology , Mesonephroma/genetics , Mesonephroma/pathology , Adult , Aged , Female , Humans , Middle Aged , Mutation
20.
Gynecol Oncol ; 161(2): 545-552, 2021 05.
Article in English | MEDLINE | ID: mdl-33674143

ABSTRACT

OBJECTIVES: To determine if the mutational landscapes and genomic features of homologous recombination DNA repair defects (HRD) vary between younger and older patients with high-grade serous ovarian cancer (HGSOC). METHODS: Younger and older women were defined as bottom and top age quartiles, respectively. HGSOCs from 15 younger (median 49 years, range 35-53) and 15 older women (median 72 years, range 70-87) were subjected to whole-exome sequencing (WES). For validation, HGSOC WES data were obtained from The Cancer Genome Atlas (TCGA), including 38 younger (median 45 years, range 34-50) and 30 older women (median 74 years, range 68-84). Mutational profiles, BRCA1/2 status, genomic HRD features, and for TCGA cases RNA-sequencing-based HRD transcriptomic signatures were assessed. RESULTS: In the institutional cohort, pathogenic germline BRCA1/2 mutations were more frequent in younger (5/15) than older women (0/15, p = 0.042). No somatic BRCA1/2 mutations were identified. HGSOCs from older patients preferentially displayed aging-related mutational signatures and, in contrast to younger patients, harbored CCNE1 amplifications (3/15, 20%). In the TCGA cohort, pathogenic germline BRCA1 (younger 8/38, older 0/30, p = 0.007) but not BRCA2 mutations (young 3/38, older 4/30, p = 0.691) were more frequent in younger patients. Again, no somatic BRCA1/2 mutations were identified. HGSOCs from younger women more frequently displayed genomic features of HRD (all, p < 0.05), a significant HRD gene-signature enrichment, but less frequently CCNE1 amplification (p = 0.05). Immunoreactive CLOVAR subtypes were more common in HGSOCs from younger women, and proliferative subtypes in HGSOCs from older women (p = 0.041). CONCLUSIONS: HGSOC patients diagnosed at an older age less frequently harbor pathogenic BRCA1 germline mutations and genomic features of HRD than younger women. Individualized treatment options, particularly pertaining to use of PARP inhibitors, in older women may be warranted.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Ovarian Neoplasms/genetics , Adult , Age Factors , Aged , Aged, 80 and over , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Cystadenocarcinoma, Serous/pathology , Female , Germ-Line Mutation , Humans , Middle Aged , Neoplasm Grading , Ovarian Neoplasms/pathology , Recombinational DNA Repair
SELECTION OF CITATIONS
SEARCH DETAIL